MAT: Specimen 1 - Multiple Choice (7 Pages; 3/11/20)

[Note: there are some differences between the 2006 and 2009 versions of Specimen 1. These sol'ns are based on the version issued in March 2009.]

Q1/A

Solution

The curves $y=x^{2}$ and $y=x+2$ intersect when $x^{2}-x-2=0$; or $(x-2)(x+1)=0$; ie when $x=-1$ and 2

Referring to the diagram, the required area is
$\int_{-1}^{2} x+2-x^{2} d x=\left[\frac{1}{2} x^{2}+2 x-\frac{1}{3} x^{3}\right]_{-1}^{2}$
$=\left(2+4-\frac{8}{3}\right)-\left(\frac{1}{2}-2+\frac{1}{3}\right)=8-\frac{9}{3}-\frac{1}{2}=\frac{9}{2}$
So the answer is (c).

Q1/B

Solution

To get a feel for the problem, we can establish that $f(1)=8$ and $f(2)=7$.

Another thing that can be done quickly is to find $f^{\prime}(x)$, which should enable us to do a rough sketch of the function in the range $0 \leq x \leq 2$.

Thus $f^{\prime}(x)=6 x^{2}-18 x+12=6\left(x^{2}-3 x+2\right)$,
which conveniently factorises to $6(x-1)(x-2)$.
[This is a typical feature of MAT problems: only when a fairly obvious line of investigation is pursued do we discover a simplifying feature.]

From the graph of $y=6(x-1)(x-2)$,
[or just $y=(x-1)(x-2)$] we see that $f^{\prime}(x)>0$ for $0 \leq x<1$;
$f^{\prime}(1)=0 ; f^{\prime}(x)<0$ for $1<x<2$, and $f^{\prime}(2)=0$
So a rough sketch of $f(x)$ is as follows:

and the answer is seen to be 3 ;

ie the answer is (b).

Q1/C

Solution

This can be tackled using vectors, by first finding the intersection of the line $3 x+4 y=50$ and the normal to this line through the point $(3,4)$.

Fortunately a normal to $3 x+4 y=50$ has gradient $\frac{4}{3}$, and so the required normal line is just $y=\frac{4}{3} x$.

And the intersection point is given by $3 x+4\left(\frac{4}{3} x\right)=50$,
so that $x(9+16)=50(3)$, and $x=6 ; y=8$
Then the reflection of the point $(3,4)$ in the given line is:
$\binom{3}{4}+2\left[\binom{6}{8}-\binom{3}{4}\right]=\binom{9}{12}$
and so the answer is (a).

Q1/D

Solution
Writing $f(x)=x^{3}-30 x^{2}+108 x-104$
$f^{\prime}(x)=3 x^{2}-60 x+108=3\left(x^{2}-20 x+36\right)$
$=3(x-18)(x-2)$
And $f(2)=8-120+216-104=0$

So the cubic has 2 stationary points, one of which is a root (see diagram), and thus there is a repeated root.

So the answer is (d).

Q1/E

[Very easy for a MAT question.]

Solution

Answer is (b).

Q1/F

Solution

$2 \cos ^{2} x+5 \sin x=4 \Rightarrow 2\left(1-\sin ^{2} x\right)+5 \sin x-4=0$
$\Rightarrow 2 \sin ^{2} x-5 \sin x+2=0$
$\Rightarrow(2 \sin x-1)(\sin x-2)=0$
$\Rightarrow \sin x=\frac{1}{2}($ reject $\sin x-2)$
$\Rightarrow 2$ sol'ns for $0 \leq x<2 \pi$
So the answer is (a).

Q1/G

Solution

$x^{2}+3 x+2>0 \Leftrightarrow(x+2)(x+1)>0(\mathrm{~A})$
and $x^{2}+x<2 \Leftrightarrow(x+2)(x-1)<0(B)$
(a) $x<-2$: (A) is met; (B) isn't met
(b) $-1<x<1$: (A) is met; (B) is met

So the answer is (b).

Q1/H

Solution

Note first of all that (a)-(d) are mutually exclusive, so it isn't a matter of finding a result that is deduced from the given information only; ie we could use any method if we wanted (as it's multiple choice).

The natural thing to do with a logarithmic equation such as $\log _{10} 2=0.3010$ is to convert it into an exponential equation, even if we can't be sure that it will lead anywhere.

Thus $10^{0.30095}<2<10^{0.30105}$,
and hence $10^{30.095}<2^{100}<10^{30.105}$,
so that $10^{30}<2^{100}<10^{30.2}=10^{30} \times 10^{0.2}<2 \times 10^{30}$
Then $10^{30}<2^{100} \Rightarrow 2^{100}$ has at least 31 digits (as 10^{30} has 31 digits).

And $2^{100}<2 \times 10^{30} \Rightarrow 2^{100}$ begins in a 1 (given that it has at least 31 digits)

So the answer is (c).

Q1/I

Solution

By starting to write out the coefficients of $x^{0}, x^{1} \ldots$
(call these $c_{0}, c_{1} \ldots$) we see that
$\frac{c_{1}}{c_{0}}=10\left(\frac{1}{2}\right)=5$
$\frac{c_{2}}{c_{1}}=\frac{9}{2}\left(\frac{1}{2}\right)=\frac{9}{4}$
$\frac{c_{3}}{c_{2}}=\frac{8}{3}\left(\frac{1}{2}\right)=\frac{4}{3}$
$\frac{c_{4}}{c_{3}}=\frac{7}{4}\left(\frac{1}{2}\right)=\frac{7}{8}$
and these ratios reduce, so that c_{3} is the greatest coefficient.
So the answer is (b).

Q1/J

Solution

When $x=0$, there is no sol'n to $x^{2} y^{2}(x+y)=1$, so that (a) and (b) can be eliminated.

Now suppose that $x<0 \& y<0$; say $x=-a^{2} \& y=-b^{2}$.
Then $-a^{4} b^{4}\left(a^{2}+b^{2}\right)=1$, which has no solutions.
So (d) can also be eliminated.
So the answer must be (c).
[Alternatively, as $x \rightarrow 0, y^{2}(x+y)=\frac{1}{x^{2}} \rightarrow \infty$, requiring $y \rightarrow \infty$
(this being the case for positive or negative x), which is consistent with (c), but not (d).]

