

MAT : Necessary & Sufficient Conditions: Ideas & Exercises

(12 pages; 24/12/24)

The following are equivalent:

- (X) \Rightarrow (Y) [(X) implies (Y)]
- (X) is a sufficient condition for (Y)
- (Y) is a necessary condition for (X)
- (X) is true only if (Y) is true [(X) cannot be true if (Y) isn't true]
- (Y) is true if (X) is true

Example

(X): The equation $ax^2 + bx + c = 0$ has a real solution

(Y): $b^2 - 4ac \geq 0$

Then (X) \Leftrightarrow (Y)

The following are equivalent:

- (X) \Leftrightarrow (Y) [(X) implies and is implied by (Y)]
- (X) is true if and only if (Y) is true
- [ought to be “(X) is true only if and if (Y) is true”]
- (X) is a necessary & sufficient condition for (Y)
- [ought to be “(X) is a sufficient & necessary condition for (Y)”]

Example

Living in London \Rightarrow Living in England (*)

but Living in England $\not\Rightarrow$ Living in London

[ie the ‘converse’ of (*): “Living in England \Rightarrow Living in London” is not true]

“Living in London” is a sufficient condition for “living in England”

“Living in England” is a necessary condition for “living in London”

“Living in England” is not a sufficient condition for “living in London”

“Living in London” is not a necessary condition for “living in England”

‘Contrapositive’ of $(X) \Rightarrow (Y)$ is $(Y') \Rightarrow (X')$

The two implications are mathematically equivalent.

So (in the above example), $(L) \Rightarrow (E)$ is equivalent to $(E') \Rightarrow (L')$.

(The set (L) is contained within the set (E).)

Possible approaches to proving that $(X) \Leftrightarrow (Y)$

- (1) $(X) \Leftrightarrow (A) \Leftrightarrow (B) \Leftrightarrow (Y)$
- (2) $(X) \Leftrightarrow (A) \Leftrightarrow (Z)$ and $(Y) \Leftrightarrow (B) \Leftrightarrow (Z)$
- (3) $(X) \Rightarrow (Y)$ and $(Y) \Rightarrow (X)$
- (4) $(X) \Rightarrow (Y)$ and $(X') \Rightarrow (Y')$

(whenever X is true, Y is true; and whenever X isn't true, Y isn't true) [$X' \Rightarrow Y'$ is the 'inverse' of $X \Rightarrow Y$]

(5) Break down into cases, and show that $(X) \Rightarrow (Y)$ and $(X') \Rightarrow (Y')$ in each case (ie either (X) and (Y) are both true, or (X) and (Y) are both false).

Note: If we only need to prove that $(Y) \Rightarrow (X)$, it may be easiest to prove that $(X) \Leftrightarrow (Y)$, and then deduce that $(Y) \Rightarrow (X)$.

What is wrong with the following?

$$x = 1 \Rightarrow x - 1 = 0 \Rightarrow (x - 1)(x - 2) = 0 \Rightarrow x = 1 \text{ or } x = 2$$

So x can be either 1 or 2.

$x = 1$ or $x = 2$ means that $x \in (1,2)$;

ie x must be either 1 or 2 (not " x CAN be either 1 or 2")

[$x = 2$ is a 'spurious' solution]

$x = 1$ or $x = 2$ [ie for any x such that $x \in (1,2)$] \Rightarrow

$$(x - 1)(x - 2) = 0 \Rightarrow x - 1 = 0;$$

so $x = 1 \Rightarrow x = 1$ or $x = 2$

but $x = 1$ or $x = 2 \Rightarrow x = 1$

Rewrite these two statements using the wording "necessary condition" and/or "sufficient condition".

$x = 1 \Rightarrow x = 1 \text{ or } x = 2$

$x = 1$ is a sufficient condition for $x = 1 \text{ or } x = 2$

$x = 1 \text{ or } x = 2$ is a necessary condition for $x = 1$

$x = 1 \text{ or } x = 2 \not\Rightarrow x = 1$

$x = 1 \text{ or } x = 2$ is not a sufficient condition for $x = 1$

$x = 1$ is not a necessary condition for $x = 1 \text{ or } x = 2$

Given that $a, b \& c$ are positive numbers, prove that $\frac{a}{b} < \frac{a+c}{b+c}$
when $a < b$.

[Given that a, b & c are positive numbers, prove that $\frac{a}{b} < \frac{a+c}{b+c}$ when $a < b$.]

What is wrong with the following:

$$\frac{a}{b} < \frac{a+c}{b+c} \Rightarrow a(b+c) < b(a+c) \text{ (as } b > 0 \text{ & } b+c > 0\text{)}$$

$$\Rightarrow ac < bc \Rightarrow a < b \text{ (as } c > 0\text{)}$$

[Given that $a, b \& c$ are positive numbers, prove that $\frac{a}{b} < \frac{a+c}{b+c}$ when $a < b$.]

The above argument is a proof that

$$\frac{a}{b} < \frac{a+c}{b+c} \Rightarrow a < b; \text{ not that } a < b \Rightarrow \frac{a}{b} < \frac{a+c}{b+c}$$

What is wrong with the following:

$$\frac{a}{b} < \frac{a+c}{b+c} \Leftrightarrow a(b+c) < b(a+c) \text{ (as } b > 0 \& b+c > 0\text{)}$$

$$\Leftrightarrow ac < bc \Leftrightarrow a < b \text{ (as } c > 0\text{)}$$

[Given that $a, b \& c$ are positive numbers, prove that $\frac{a}{b} < \frac{a+c}{b+c}$ when $a < b$.]

We need to make it clear that $a < b \Rightarrow \frac{a}{b} < \frac{a+c}{b+c}$ is the required result.

Improved solution:

$$\frac{a}{b} < \frac{a+c}{b+c} \Leftrightarrow a(b+c) < b(a+c) \text{ (as } b > 0 \text{ & } b+c > 0\text{)}$$

$$\Leftrightarrow ac < bc \Leftrightarrow a < b \text{ (as } c > 0\text{)}$$

So $a < b \Rightarrow \frac{a}{b} < \frac{a+c}{b+c}$; ie $\frac{a}{b} < \frac{a+c}{b+c}$ when $a < b$, as required.

If n is a positive integer, and n^2 is odd (A), prove that n is odd (B).
[Result to prove: $A \Rightarrow B$]

If n is a positive integer, and n^2 is odd (A), prove that n is odd (B).
[Result to prove: $A \Rightarrow B$]

Solution

Method 1: Proof by contradiction

Suppose that n is even. Then $n = 2m$, for some positive integer m .

But then $n^2 = (2m)^2 = 4m^2$, which is divisible by 2, and hence even. This contradicts the fact that n^2 is odd, and so n must be odd.

Method 2: Using contrapositive

To prove that $B' \Rightarrow A'$:

Suppose that n is even. Then (as before) n^2 is even, so that A' holds.