MAT Exercises - Trigonometry - Sol'ns
(16 pages; 4/11/22)
(1) How many solutions does the equation
$\sin (2 \cos (2 x)+2)=0$ have, for $0 \leq x \leq 2 \pi$?

Solution

With $u=2 \cos (2 x)+2,0 \leq x \leq 2 \pi \Rightarrow 2(-1)+2 \leq u \leq 2(1)+2$ ie $0 \leq u \leq 4$

Then $\sin u=0 \Rightarrow u=0$ or π
$\Rightarrow \cos (2 x)=-1$ or $\frac{\pi-2}{2}=\frac{\pi}{2}-1$
Now making the substitution $w=2 x, 0 \leq w \leq 4 \pi$
Referring to the graph of cosw,
$\cos w=-1$ has 2 solutions (for w), and $\cos w=\frac{\pi}{2}-1$ has 4
solutions; making 6 solutions in total.
As $x=\frac{w}{2}$, there are also 6 solutions for x.
[A variation on the above approach is to say that $2 \cos (2 x)+2$ must equal $n \pi$, for suitable integer n

Then, either $n=0$, with $\cos (2 x)=-1$,
or $n=1$, with $\cos (2 x)=\frac{\pi}{2}-1$
(no other values of n are consistent with $2 \cos (2 x)+2$),
as before.]
(2) Sketch (i) $y=\sqrt{\sin x}$ and (ii) $y=(\sin x)^{\frac{1}{n}}$ for large positive integer n (for $0 \leq x \leq \pi$ in both cases).

Solution

(i) Note that, for $0<y<1, \sqrt{y}>y$

So, for $y=\sqrt{\sin x}$, the graph will hug the $y-$ axis more than for $y=\sin x$.

Also, if $f(x)=\sqrt{\sin x}, f^{\prime}(x)=\frac{1}{2}(\sin x)^{-\frac{1}{2}} \cos x$, so that $f^{\prime}(0)=\infty$ (strictly speaking, it is 'undefined'); ie the graph is vertical at $x=0$ (and also $x=\pi$, by symmetry).
(ii) The effect is greater for larger n, and the graph tends to a rectangular shape.
(3) What is the period of $2 \sin \left(3 x+\frac{\pi}{4}\right)+3 \cos \left(\frac{2 x}{3}-\frac{\pi}{3}\right)$?

Solution

The period T_{1} of $2 \sin \left(3 x+\frac{\pi}{4}\right)$ satisfies $3 T_{1}=2 \pi$
[as $2 \sin \left(3[0]+\frac{\pi}{4}\right)=2 \sin \left(2 \pi+\frac{\pi}{4}\right)$]; ie $T_{1}=\frac{2 \pi}{3}$
Similarly for $3 \cos \left(\frac{2 x}{3}-\frac{\pi}{3}\right), \frac{2 T_{2}}{3}=2 \pi$, so that $T_{2}=3 \pi$
The period of the sum of these functions is the LCM of these two periods; ie 6π.
(4) Assuming that $\sin ^{2} \theta+\cos ^{2} \theta=1$, but without using any compound angle results, show that $\sin \theta \cos \theta \leq \frac{1}{2}$

Solution

$$
\begin{aligned}
& (\sin \theta-\cos \theta)^{2} \geq 0 \Rightarrow \sin ^{2} \theta+\cos ^{2} \theta-2 \sin \theta \cos \theta \geq 0 \\
& \Rightarrow 1 \geq 2 \sin \theta \cos \theta \Rightarrow \sin \theta \cos \theta \leq \frac{1}{2}
\end{aligned}
$$

(5) Solve $\sin \left(2 \theta-\frac{\pi}{6}\right)=0.5(0<\theta<2 \pi)$

Let $=2 \theta-\frac{\pi}{6}$, so that $-\frac{\pi}{6}<u<4 \pi-\frac{\pi}{6}$
Then $\sin u=0.5 \Rightarrow u=\frac{\pi}{6}, \frac{\pi}{6}+2 \pi$ and $\pi-\frac{\pi}{6}, \pi-\frac{\pi}{6}+2 \pi$ ie $u=\frac{\pi}{6}, \frac{13 \pi}{6}, \frac{5 \pi}{6} \& \frac{17 \pi}{6}$ or $\frac{\pi}{6}, \frac{5 \pi}{6}, \frac{13 \pi}{6} \& \frac{17 \pi}{6}$ so that $\theta=\frac{1}{2}\left(u+\frac{\pi}{6}\right)=\frac{2 \pi}{12}, \frac{6 \pi}{12}, \frac{14 \pi}{12} \& \frac{18 \pi}{12}$
ie $\theta=\frac{\pi}{6}, \frac{\pi}{2}, \frac{7 \pi}{6} \& \frac{3 \pi}{2}$
(6) Solve $\sin \theta=\cos 4 \theta$ for $0<\theta<\pi$

Solution

$\sin \theta=\sin \left(\frac{\pi}{2}-4 \theta\right)$
Hence $\theta=\frac{\pi}{2}-4 \theta+2 n \pi(1)$ or $\theta=\left(\pi-\left[\frac{\pi}{2}-4 \theta\right]\right)+2 n \pi$
From (1), $5 \theta=\frac{\pi(1+4 n)}{2}$, so that $\theta=\frac{\pi(1+4 n)}{10}$
giving $\theta=\frac{\pi}{10}, \frac{\pi}{2}$ or $\frac{9 \pi}{10}$
From (2), $-3 \theta=\frac{\pi(1+4 n)}{2}$, so that $\theta=\frac{-\pi(1+4 n)}{6}$
giving $\theta=\frac{\pi}{2}$ again
Thus, the solutions are $\theta=\frac{\pi}{10}, \frac{\pi}{2}$ or $\frac{9 \pi}{10}$
A sketch confirms that these are plausible.

(7) How many solutions does the equation
$\sin (2 \cos (2 x)+2)=0$ have, for $0 \leq x \leq 2 \pi$?

Solution
With $u=2 \cos (2 x)+2,0 \leq x \leq 2 \pi \Rightarrow 2(-1)+2 \leq u \leq 2(1)+2$ ie $0 \leq u \leq 4$

Then $\sin u=0 \Rightarrow u=0$ or π
$\Rightarrow \cos (2 x)=-1$ or $\frac{\pi-2}{2}=\frac{\pi}{2}-1$
Now making the substitution $w=2 x, 0 \leq w \leq 4 \pi$
Referring to the graph of $\cos w$, $\cos w=-1$ has 2 solutions (for w), and $\cos w=\frac{\pi}{2}-1$ has 4 solutions; making 6 solutions in total.

As $=\frac{w}{2}$, there are also 6 solutions for x.
[A variation on the above approach is to say that $2 \cos (2 x)+2$ must equal $n \pi$, for suitable integer n

Then, either $n=0$, with $\cos (2 x)=-1$,
or $n=1$, with $\cos (2 x)=\frac{\pi}{2}-1$
(no other values of n are consistent with $2 \cos (2 x)+2$),
as before.]
(8) Angle Bisector Theorem

Referring to the diagram below, the Angle Bisector theorem says that $\frac{B D}{D C}=\frac{A B}{A C}$. Prove the Angle Bisector Theorem.

Solution

By the Sine rule for triangle $A B D, \frac{B D}{\sin \theta}=\frac{A B}{\sin A D B}$
and, for triangle $\mathrm{ADC}, \frac{D C}{\sin \theta}=\frac{A C}{\sin A D C}=\frac{A C}{\sin A D B}$ (2)
Then (1) $\Rightarrow \frac{\sin \theta}{\sin A D B}=\frac{B D}{A B}$ and (2) $\Rightarrow \frac{\sin \theta}{\sin A D B}=\frac{D C}{A C}$
so that $\frac{B D}{A B}=\frac{D C}{A C}$
and hence $\frac{B D}{D C}=\frac{A B}{A C}$

