MAT Exercises – Trigonometry - Sol'ns

(16 pages; 4/11/22)

(1) How many solutions does the equation

sin(2cos(2x) + 2) = 0 have, for $0 \le x \le 2\pi$?

With $u = 2\cos(2x) + 2$, $0 \le x \le 2\pi \Rightarrow 2(-1) + 2 \le u \le 2(1) + 2$ ie $0 \le u \le 4$ Then $sinu = 0 \Rightarrow u = 0$ or π

$$\Rightarrow \cos(2x) = -1 \text{ or } \frac{\pi - 2}{2} = \frac{\pi}{2} - 1$$

Now making the substitution w = 2x, $0 \le w \le 4\pi$

Referring to the graph of *cosw*,

cosw = -1 has 2 solutions (for *w*), and $cosw = \frac{\pi}{2} - 1$ has 4 solutions; making 6 solutions in total.

As $x = \frac{w}{2}$, there are also 6 solutions for x.

[A variation on the above approach is to say that

2cos(2x) + 2 must equal $n\pi$, for suitable integer n

Then, either n = 0, with cos(2x) = -1,

or n = 1, with $cos(2x) = \frac{\pi}{2} - 1$

(no other values of *n* are consistent with 2cos(2x) + 2),

as before.]

(2) Sketch (i) $y = \sqrt{sinx}$ and (ii) $y = (sinx)^{\frac{1}{n}}$ for large positive integer *n* (for $0 \le x \le \pi$ in both cases).

(i) Note that, for 0 < y < 1, $\sqrt{y} > y$

So, for $y = \sqrt{sinx}$, the graph will hug the y - axis more than for y = sinx.

Also, if $f(x) = \sqrt{sinx}$, $f'(x) = \frac{1}{2}(sinx)^{-\frac{1}{2}}cosx$,

so that $f'(0) = \infty$ (strictly speaking, it is 'undefined');

ie the graph is vertical at x = 0 (and also $x = \pi$, by symmetry).

(ii) The effect is greater for larger *n*, and the graph tends to a rectangular shape.

(3) What is the period of
$$2\sin\left(3x + \frac{\pi}{4}\right) + 3\cos\left(\frac{2x}{3} - \frac{\pi}{3}\right)$$
?

The period T_1 of $2 \sin\left(3x + \frac{\pi}{4}\right)$ satisfies $3T_1 = 2\pi$ [as $2\sin\left(3[0] + \frac{\pi}{4}\right) = 2\sin\left(2\pi + \frac{\pi}{4}\right)$]; ie $T_1 = \frac{2\pi}{3}$ Similarly for $3\cos\left(\frac{2x}{3} - \frac{\pi}{3}\right), \frac{2T_2}{3} = 2\pi$, so that $T_2 = 3\pi$

The period of the sum of these functions is the LCM of these two periods; ie 6π .

(4) Assuming that $sin^2\theta + cos^2\theta = 1$, but without using any compound angle results, show that $sin\theta cos\theta \le \frac{1}{2}$

 $(\sin\theta - \cos\theta)^2 \ge 0 \Rightarrow \sin^2\theta + \cos^2\theta - 2\sin\theta\cos\theta \ge 0$

$$\Rightarrow 1 \ge 2sin\theta cos\theta \Rightarrow sin\theta cos\theta \le \frac{1}{2}$$

(5) Solve $\sin(2\theta - \frac{\pi}{6}) = 0.5 \ (0 < \theta < 2\pi)$

Let $= 2\theta - \frac{\pi}{6}$, so that $-\frac{\pi}{6} < u < 4\pi - \frac{\pi}{6}$ Then $\sin u = 0.5 \Rightarrow u = \frac{\pi}{6}$, $\frac{\pi}{6} + 2\pi$ and $\pi - \frac{\pi}{6}$, $\pi - \frac{\pi}{6} + 2\pi$ ie $u = \frac{\pi}{6}$, $\frac{13\pi}{6}$, $\frac{5\pi}{6}$ & $\frac{17\pi}{6}$ or $\frac{\pi}{6}$, $\frac{5\pi}{6}$, $\frac{13\pi}{6}$ & $\frac{17\pi}{6}$ so that $\theta = \frac{1}{2}(u + \frac{\pi}{6}) = \frac{2\pi}{12}$, $\frac{6\pi}{12}$, $\frac{14\pi}{12}$ & $\frac{18\pi}{12}$ ie $\theta = \frac{\pi}{6}$, $\frac{\pi}{2}$, $\frac{7\pi}{6}$ & $\frac{3\pi}{2}$ (6) Solve $sin\theta = cos4\theta$ for $0 < \theta < \pi$

 $\sin\theta = \sin\left(\frac{\pi}{2} - 4\theta\right)$ Hence $\theta = \frac{\pi}{2} - 4\theta + 2n\pi (1)$ or $\theta = \left(\pi - \left[\frac{\pi}{2} - 4\theta\right]\right) + 2n\pi (2)$ From (1), $5\theta = \frac{\pi(1+4n)}{2}$, so that $\theta = \frac{\pi(1+4n)}{10}$ giving $\theta = \frac{\pi}{10}$, $\frac{\pi}{2}$ or $\frac{9\pi}{10}$ From (2), $-3\theta = \frac{\pi(1+4n)}{2}$, so that $\theta = \frac{-\pi(1+4n)}{6}$ giving $\theta = \frac{\pi}{2}$ again Thus, the solutions are $\theta = \frac{\pi}{10}$, $\frac{\pi}{2}$ or $\frac{9\pi}{10}$

A sketch confirms that these are plausible.

(7) How many solutions does the equation sin(2cos(2x) + 2) = 0 have, for $0 \le x \le 2\pi$?

With $u = 2\cos(2x) + 2$, $0 \le x \le 2\pi \Rightarrow 2(-1) + 2 \le u \le 2(1) + 2$ ie $0 \le u \le 4$ Then $sinu = 0 \Rightarrow u = 0$ or π

$$\Rightarrow \cos(2x) = -1 \text{ or } \frac{\pi - 2}{2} = \frac{\pi}{2} - 1$$

Now making the substitution w = 2x, $0 \le w \le 4\pi$

Referring to the graph of *cosw*,

cosw = -1 has 2 solutions (for *w*), and $cosw = \frac{\pi}{2} - 1$ has 4 solutions; making 6 solutions in total.

As $=\frac{w}{2}$, there are also 6 solutions for *x*.

[A variation on the above approach is to say that

2cos(2x) + 2 must equal $n\pi$, for suitable integer n

Then, either n = 0, with cos(2x) = -1,

or n = 1, with $cos(2x) = \frac{\pi}{2} - 1$

(no other values of *n* are consistent with 2cos(2x) + 2),

as before.]

(8) Angle Bisector Theorem

Referring to the diagram below, the Angle Bisector theorem says that $\frac{BD}{DC} = \frac{AB}{AC}$. Prove the Angle Bisector Theorem.

By the Sine rule for triangle ABD, $\frac{BD}{sin\theta} = \frac{AB}{sinADB}$ (1) and, for triangle ADC, $\frac{DC}{sin\theta} = \frac{AC}{sinADC} = \frac{AC}{sinADB}$ (2) Then (1) $\Rightarrow \frac{sin\theta}{sinADB} = \frac{BD}{AB}$ and (2) $\Rightarrow \frac{sin\theta}{sinADB} = \frac{DC}{AC}$ so that $\frac{BD}{AB} = \frac{DC}{AC}$ and hence $\frac{BD}{DC} = \frac{AB}{AC}$