MAT Exercises - Recurrence relations - Sol'ns

(10 pages; 4/11/22)
(1) (i) Consider the sequence defined by $u_{n}=a u_{n-1}+b$, where a \& b are real constants, and u_{0} is given.

What familiar sequences are special cases of this sequence?

Solution

Setting $a=1$ gives an arithmetic sequence.
Setting $b=0$ gives a geometric sequence.
(ii) Define a new sequence by $v_{n}=u_{n}+c$

For what value of c, in terms of $a \& b$, will v_{n} be a geometric sequence? For what value of a does this not work?

Solution
$v_{n-1}=u_{n-1}+c$, and hence
$u_{n}=a u_{n-1}+b \Rightarrow v_{n}-c=a\left(v_{n-1}-c\right)+b$
$\Rightarrow v_{n}=a v_{n-1}+b+c(1-a)$
For v_{n} to be a geometric sequence, we want $b+c(1-a)=0$, so that $c=\frac{-b}{1-a}=\frac{b}{a-1}$, provided that $a \neq 1$

When $a=1, u_{n}$, and hence v_{n} also, are arithmetic sequences.
(iii) If $u_{n}=2 u_{n-1}+3$, and $u_{0}=4$, find a formula for u_{n} in terms of n

Solution
From (ii), $c=\frac{3}{2-1}=3$ and $v_{n}=2 v_{n-1}$
Then $v_{n}=v_{0}\left(2^{n}\right)$
and $v_{n}=u_{n}+3$, so that $u_{n}+3=\left(u_{0}+3\right)\left(2^{n}\right)$
and $\therefore u_{n}=7\left(2^{n}\right)-3$
(and this can be checked by comparing with $u_{n}=2 u_{n-1}+3$, and $u_{0}=4$)
(iv) Find a similar formula for $u_{n}=a u_{n-1}+b$, where u_{0} is given.

Solution

From (ii), $c=\frac{b}{a-1}$ and $v_{n}=a v_{n-1}$
Then $v_{n}=v_{0}\left(a^{n}\right)$
and $v_{n}=u_{n}+c$, so that $u_{n}+c=\left(u_{0}+c\right)\left(a^{n}\right)$
and $\therefore u_{n}=\left(u_{0}+c\right)\left(a^{n}\right)-c=\left(u_{0}+\frac{b}{a-1}\right)\left(a^{n}\right)-\frac{b}{a-1}$
(v) Under what conditions will u_{n} be constant? Give a non-trivial example.

Solution

Either $a=1 \& b=0$
Or $a=0$ and $u_{0}=b$
Or $u_{0}+\frac{b}{a-1}=0$; ie $u_{0}=\frac{b}{1-a}$
For example, $u_{n}=2 u_{n-1}-1$, where $u_{0}=1$

