MAT Exercises - Logarithms - Sol'ns (7 pages; 4/11/22)
(1) (i) Show that $\log _{2} 3>\frac{3}{2}$
(ii) Find an upper bound for $\log _{2} 3$ (as small as possible)
(i) Show that $\log _{2} 3>\frac{3}{2}$

Solution
$\log _{2} 3>\frac{3}{2} \Leftrightarrow 3>2^{\frac{3}{2}}$ (as $y=2^{x}$ is an increasing function)
$\Leftrightarrow 3^{2}>2^{3}$
(ii) Find an upper bound for $\log _{2} 3$ (as small as possible)

Solution

Suppose that $\log _{2} 3<\frac{m}{n}$
Then $3<2^{\left(\frac{m}{n}\right)}$ and $3^{n}<2^{m}$
As $243=3^{5}<2^{8}=256, \log _{2} 3<\frac{8}{5}$
[and $\frac{8}{5}$ is a reasonably low upper bound, as $243 \& 256$ are reasonably close]
(2) Prove that $\log _{b} c=\frac{\log _{a} c}{\log _{a} b}$

Solution
rtp $\log _{a} b \log _{b} c=\log _{a} c \quad(*)$

Method 1

Let $b=a^{x} \& c=b^{y}$
Then $c=\left(a^{x}\right)^{y}=a^{x y}$
and $\log _{a} c=x y=\log _{a} b \log _{b} c$, as required

Method 2

$\left(^{*}\right)$ is equivalent to $a^{\log _{a} b \log _{b} c}=a^{\log _{a} c}$ (as $y=a^{x}$ is an increasing function)
ie $\left(a^{\log _{a} b}\right)^{\log _{b} c}=c\left({ }^{* *}\right)$
and the LHS equals $b^{\log _{b} c}=c$, so that (${ }^{* *}$) holds, and hence $\left(^{*}\right)$ holds also
(3) Show that $\log (4-\sqrt{15})=-\log (4+\sqrt{15})$

Solution

$$
\log (4-\sqrt{15})=-\log \left(\frac{1}{4-\sqrt{15}}\right)=-\log \left(\frac{4+\sqrt{15}}{16-15}\right)=-\log (4+\sqrt{15})
$$

