MAT Exercises - Integers - Sol'ns (8 pages; 3/11/22)
(1) Can n^{3} equal $n+12345670$ (where n is a positive integer)?

Solution
Rearrange to $n^{3}-n=12345670$
$n^{3}-n=n\left(n^{2}-1\right)=n(n-1)(n+1)$, and one of these factors must be a multiple of 3 ; whereas 12345670 is not a multiple of 3 (since $1+2+3+4+5+6+7+0$ isn't a multiple of 3); so answer is No.
(2) Find all positive integer solutions of the equation

$$
x y-8 x+6 y=90
$$

Solution
[Aiming for something of the form $f(x) g(y)=c$, where c is an integer:]
$x y-8 x+6 y=(x+6)(y-8)+48$,
so that the original equation is equivalent to
$(x+6)(y-8)=42$
The positive integer solutions are given by:
$x+6=7, y-8=6$
$x+6=14, y-8=3$
$x+6=21 y-8=2$
$x+6=42, y-8=1$,
so that the solutions are:
$x=1, y=14$
$x=8, y=11$
$x=15, y=10$
$x=36, y=9$
(3) Show that $3^{57}-2^{57}$ cannot be prime.

Solution

We could consider using the result
$x^{n}-y^{n}=(x-y)\left(x^{n-1}+x^{n-2} y+\cdots+x y^{n-2}+y^{n-1}\right)$
but it isn't of any use having $x-y=3-2=1$.
However, we can write $3^{57}-2^{57}$ as $\left(3^{19}\right)^{3}-\left(2^{19}\right)^{3}$, for example, to give the factor $3^{19}-2^{19}$ (or writing it instead as $\left(3^{3}\right)^{19}-\left(2^{3}\right)^{19}, 3^{3}-2^{3}$ is also seen to be a factor).

So $3^{57}-2^{57}$ isn't a prime number.
(4) Prove that there are no positive integers m and n such that $m^{2}=n^{2}+1$

Solution

[Proof by contradiction]
Suppose that $m^{2}=n^{2}+1$, where m and n are positive integers.
Then $m^{2}-n^{2}=1$,
and hence $(m-n)(m+n)=1$
As m and n are integers, $m-n$ and $m+n$ will also be integers, and so they are either both 1 or both -1

But $m+n>0$, so that $m-n=1$ and $m+n=1$
Subtracting the 1 st eq'n from the 2 nd gives $2 n=0$, so that $n=0$, which contradicts the assumption that n is a positive integer.

So there are no positive integers m and n such that $m^{2}=n^{2}+1$

