MAT Exercises - Curve Sketching - Sol'ns
(6 pages; 4/11/22)
(1) Sketch the graph of $\sqrt{x^{2}-2 x+1}$ for $0 \leq x \leq 2$

For $0 \leq x \leq 1, \sqrt{x^{2}-2 x+1}=\sqrt{(x-1)^{2}}=\sqrt{(1-x)^{2}}=1-x$ For $1 \leq x \leq 2, \sqrt{x^{2}-2 x+1}=\sqrt{(x-1)^{2}}=x-1$
(2) Sketch (i) $y=\sqrt{\sin x}$ and (ii) $y=(\sin x)^{\frac{1}{n}}$ for large positive integer n (for $0 \leq x \leq \pi$ in both cases).

Solution

(i) Note that, for $0<y<1, \sqrt{y}>y$

So, for $y=\sqrt{\sin x}$, the graph will hug the $y-$ axis more than for $y=\sin x$.

Also, if $f(x)=\sqrt{\sin x}, f^{\prime}(x)=\frac{1}{2}(\sin x)^{-\frac{1}{2}} \cos x$, so that $f^{\prime}(0)=\infty$ (strictly speaking, it is 'undefined'); ie the graph is vertical at $x=0$ (and also $x=\pi$, by symmetry).
(ii) The effect is greater for larger n, and the graph tends to a rectangular shape.
(3) Sketch the curve $x^{2}=y(1-y)$

Solution
$y(1-y)=-\left(y^{2}-y\right)=-\left(y-\frac{1}{2}\right)^{2}+\frac{1}{4}$
So curve is $x^{2}+\left(y-\frac{1}{2}\right)^{2}=\frac{1}{4}$
ie a circle centre ($0, \frac{1}{2}$) and radius $\frac{1}{2}$

