MAT – Basic Ideas & Exercises (20 pages; 18/11/24)

(i) Does $\sqrt{4}$ equal 2 or ± 2 ? (ii) Simplify $\sqrt{x^2}$

(i) Does $\sqrt{4}$ equal 2 or ± 2 ? (ii) Simplify $\sqrt{x^2}$

Solution

(i) 2 (ii) |*x*|

Simplify the following:

(i)
$$27^{-\frac{2}{3}}$$
 (ii) $\cos(-210^{\circ})$ (iii) $\log_4\left(\frac{1}{64}\right)$

(i)
$$27^{-\frac{2}{3}}$$
 (ii) $\cos(-210^{\circ})$ (iii) $\log_4\left(\frac{1}{64}\right)$

Solution

(i)
$$\frac{1}{27^{\frac{2}{3}}} = \frac{1}{\left(27^{\frac{1}{3}}\right)^2} = \frac{1}{3^2} = \frac{1}{9}$$

(ii) $\cos(-210^\circ) = \cos(210^\circ) = \cos(360^\circ - 210^\circ) = \cos(150^\circ) = -\frac{\sqrt{3}}{2}$
(iii) $\log_4\left(\frac{1}{64}\right) = \log_4(4^{-3}) = -3$

Prove that $sin^2\theta + cos^2\theta = 1$

Prove that $sin^2\theta + cos^2\theta = 1$

Solution

Apply Pythagoras to a right-angled triangle with sides $\cos\theta$, $\sin\theta$ & 1.

Find the turning point of the graph of y = (x - 1)(x + 2)

Find the turning point of the graph of y = (x - 1)(x + 2)

Due to the symmetry of the curve about the vertical line through the turning point, the *x*-coordinate of the turning point will be $\frac{1}{2}(-2+1) = -\frac{1}{2}$

Then the *y*-coordinate is $= \left(-\frac{1}{2} - 1\right) \left(-\frac{1}{2} + 2\right) = \left(\frac{-3}{2}\right) \left(\frac{3}{2}\right) = -\frac{9}{4}$

Alternatively, we can complete the square:

 $(x-1)(x+2) = x^2 + x - 2 = \left(x + \frac{1}{2}\right)^2 - \frac{1}{4} - 2 = \left(x + \frac{1}{2}\right)^2 - \frac{9}{4}$
giving the turning point of $\left(-\frac{1}{2}, -\frac{9}{4}\right)$

Composite transformations required to obtain

 $y = \sin (2x + 60)$ from y = sinx?

Either (a) stretch by scale factor $\frac{1}{2}$ in the *x* direction, to give $y = \sin(2x)$, and then translate by $\binom{-30}{0}$, to give $y = \sin(2[x + 30]) = \sin(2x + 60)$ or (b) translate by $\binom{-60}{0}$, to give $y = \sin(x + 60)$, and then stretch by scale factor $\frac{1}{2}$ in the *x* direction, to give $y = \sin(2x + 60)$

(It is perhaps more awkward to produce a sketch by method (b).)

Express $-\cos\theta$ in the form $\cos\alpha$ (where α is to be found in terms of θ), using an algebraic method.

Express $-\cos\theta$ in the form $\cos\alpha$ (where α is to be found in terms of θ), using an algebraic method.

Solution

$$-\cos\theta = -\sin\left(\frac{\pi}{2} - \theta\right) = \sin\left(\theta - \frac{\pi}{2}\right)$$
$$= \cos\left(\frac{\pi}{2} - \left[\theta - \frac{\pi}{2}\right]\right) = \cos\left(\pi - \theta\right) \quad (\text{or } \cos\left(3\pi - \theta\right) \text{ etc})$$
Alternatively, $-\cos\theta = -\cos(-\theta) = -\sin\left(\frac{\pi}{2} - \left[-\theta\right]\right)$
$$= \sin\left(-\frac{\pi}{2} - \theta\right) = \cos\left(\frac{\pi}{2} - \left[-\frac{\pi}{2} - \theta\right]\right) = \cos\left(\pi + \theta\right)$$
$$(\text{or } \cos\left(3\pi + \theta\right) \text{ etc})$$

Formula for (i) $\sum_{r=1}^{n} r$ (ii) $\sum_{r=1}^{n} r^2$ (iii) $\sum_{r=1}^{n} r^3$

Solution

$$\sum_{r=1}^{n} r = \frac{1}{2}n(n+1)$$

$$\sum_{r=1}^{n} r^2 = \frac{1}{6}n(n+1)(2n+1)$$

$$\sum_{r=1}^{n} r^3 = \frac{1}{4}n^2(n+1)^2$$

(i) Expand $(a + b + c)^2$ (ii) Expand $(a + b + c)^3$

(i) Expand $(a + b + c)^2$ (ii) Expand $(a + b + c)^3$ Solution

(i) $(a + b + c)^2 = (a^2 + b^2 + c^2) + 2(ab + ac + bc)$ (ii) $(a + b + c)^3 = (a^3 + b^3 + c^3)$ $+3(a^2b + a^2c + b^2a + b^2c + c^2a + c^2b)$ +6abc

Factorise $15x^2 + 34x + 16$

Factorise $15x^2 + 34x + 16$

Solution

We want A and B such that A + B = 34 and AB = (15)(16) = 240

Again, the factorisation of 240 is $2^4 \times 3 \times 5$

Starting with |A| and |B| close to each other:

eg A = 15, $B = 16 \Rightarrow A + B = 31$

A = 16, $B = 15 \Rightarrow A + B = 31$ (ie no change)

 $A = 20, B = 12 \Rightarrow A + B = 32$ (ie moving in the right direction)

A = 24, $B = 10 \Rightarrow A + B = 34$

Note: A = 15, 12, 10 also leads to a solution.

Then we have $(15x^2 + 24x) + (10x + 16)$

and 3x(5x+8) + 2(5x+8) = (3x+2)(5x+8)

How many solutions are there to $x^3 - 6x^2 + 9x + 2 = 0$?

How many solutions are there to $x^3 - 6x^2 + 9x + 2 = 0$?

Solution

$$x^{3} - 6x^{2} + 9x + 2 = 0 \Leftrightarrow x(x^{2} - 6x + 9) = -2$$

$$\Leftrightarrow x(x-3)^2 = -2$$

So one solution, from graph of $y = x(x - 3)^2$