2023 MAT – Q2 (4 pages; 17/8/25)

2. For ALL APPLICANTS.

For n a positive whole number, and for $x \neq 0$, let $p_n(x) = x^n + x^{-n}$.

- (i) [3 marks] Sketch the graph of $y = p_1(x)$. Label any turning points on your sketch.
- (ii) [1 mark] Show that $p_2(x) = p_1(x)^2 2$.
- (iii) [1 mark] Find an expression for p₃(x) in terms of p₁(x).
- (iv) [5 marks] Find all real solutions x to the equation

$$x^4 + x^3 - 10x^2 + x + 1 = 0$$
.

(v) [5 marks] Find all real solutions x to the equation

$$x^7 + 2x^6 - 5x^5 - 7x^4 + 7x^3 + 5x^2 - 2x - 1 = 0.$$

Solution

(i)
$$p_1(x) = x + \frac{1}{x} = \frac{x^2 + 1}{x}$$
; so vertical asymptote at $x = 0$

(and
$$p_1(\delta) < 0$$
 for $\delta < 0$; $p_1(\delta) > 0$ for $\delta > 0$)

Also
$$p_1(x) \to \pm \infty$$
 as $x \to \pm \infty$

$$p'_{1}(x) = 1 - \frac{1}{x^{2}}; p''_{1}(x) = \frac{2}{x^{3}}$$

$$p'_{1}(x) = 0$$
 when $x = \pm 1$

$$p''_{1}(1) > 0$$
, so minimum at (1,2)

$$p''_{1}(-1) < 0$$
, so maximum at $(-1, -2)$

(ii)
$$[p_1(x)]^2 - 2 = (x + \frac{1}{x})^2 - 2 = x^2 + x^{-2} = p_2(x)$$

(iii)
$$p_3(x) = x^3 + x^{-3} = \left(x + \frac{1}{x}\right)^3 - 3x^2 \cdot \frac{1}{x} - 3x \cdot \frac{1}{x^2}$$

= $[p_1(x)]^3 - 3(x + x^{-1}) = [p_1(x)]^3 - 3p_1(x)$

(iv)
$$x^4 + x^3 - 10x^2 + x + 1 = 0$$
 (*)

 $\Leftrightarrow x^2 + x - 10 + \frac{1}{x} + \frac{1}{x^2} = 0$, on division by x (as x = 0 isn't a root of (*));

ie
$$p_2(x) + p_1(x) - 10 = 0$$
;

or
$$[p_1(x)]^2 - 2 + p_1(x) - 10 = 0$$
, from (ii),

or
$$[p_1(x)]^2 + p_1(x) - 12 = 0$$
, (B)

or
$$(p_1(x) + 4)(p_1(x) - 3) = 0$$
;

giving
$$p_1(x) = -4$$
 or 3;

ie
$$x + \frac{1}{x} = -4$$
 or 3,

so that either
$$x^2 + 4x + 1 = 0$$
 or $x^2 - 3x + 1 = 0$; (A)

and hence either
$$x = \frac{-4 \pm \sqrt{12}}{2}$$
 or $x = \frac{3 \pm \sqrt{5}}{2}$;

ie
$$x = -2 \pm \sqrt{3}$$
 or $x = \frac{3}{2} \pm \frac{\sqrt{5}}{2}$

[Strictly speaking, we have only shown so far that the roots of the original equation must belong to the set containing the above 4 roots. Conceivably some of the roots may be repeated, with some of the 4 values above not actually satisfying the original equation.]

We can see also that the process is reversible: the above 4 values satisfy (A) and (B) and (*) in turn, so that these values are the roots of the original equation.

(v) [Dividing by some power of *x* straightaway doesn't seem to lead anywhere, but we can see that 1 is a root of the equation.]

As x = 1 can be seen to be a root,

$$x^7 + 2x^6 - 5x^5 - 7x^4 + 7x^3 + 5x^2 - 2x - 1 = 0$$

$$\Leftrightarrow (x-1)(x^6 + 3x^5 - 2x^4 - 9x^3 - 2x^2 + 3x + 1) = 0$$

As x=0 isn't a root, we can divide the 6th order polynomial by x^3 , to give $x^3+3x^2-2x-9-\frac{2}{x}+\frac{3}{x^2}+\frac{1}{x^3}=0$;

ie
$$p_3(x) + 3p_2(x) - 2p_1(x) - 9 = 0$$
,

which can be written as

$$\{[p_1(x)]^3 - 3p_1(x)\} + 3([p_1(x)]^2 - 2) - 2p_1(x) - 9 = 0$$

or $[p_1(x)]^3 + 3[p_1(x)]^2 - 5p_1(x) - 15 = 0$.

a root of which can be seen to be $p_1(x) = -3$ [considering the factors of -15],

so that
$$(p_1(x) + 3)([p_1(x)]^2 - 5) = 0$$
,

and so
$$p_1(x) = -3$$
 or $\pm \sqrt{5}$

When
$$p_1(x) = -3$$
, $x + \frac{1}{x} = -3$,

so that
$$x^2 + 3x + 1 = 0$$
,

and
$$x = \frac{-3 \pm \sqrt{5}}{2}$$

When
$$p_1(x) = \pm \sqrt{5}$$
, $x + \frac{1}{x} = \pm \sqrt{5}$,

so that
$$x^2 \mp \sqrt{5}x + 1 = 0$$
,

and
$$x = \frac{\pm\sqrt{5}\pm\sqrt{1}}{2}$$

The argument above is reversible again, and so the 7 roots of the original equation are:

$$1, -\frac{3}{2} \pm \frac{\sqrt{5}}{2}, \pm \frac{1}{2} \pm \frac{\sqrt{5}}{2}$$