2022 MAT – Q3 (4 pages; 6/11/23)

Solution

(i) The curves intersect (or touch) where $(x^2 - 1)^2 = (x^2 - 1)^3$

$$\Leftrightarrow (x^2 - 1)^2 (1 - [x^2 - 1]) = 0$$

$$\Leftrightarrow (x^2 - 1)^2(2 - x^2) = 0$$

 $\Leftrightarrow x = \pm 1$ (touching) or $\pm \sqrt{2}$ (crossing)

The curve $y = (x^2 - 1)^2$ touches the *x* axis when $x = \pm 1$, and crosses the *y* axis when y = 1.

The curve $y = (x^2 - 1)^3$ touches the *x* axis when $x = \pm 1$, and crosses the *y* axis when y = -1.

$$y = (x^2 - 1)^2 = (x - 1)^2(x + 1)^2$$

and $y = (x^2 - 1)^3 = (x - 1)^3 (x + 1)^3$

fmng.uk

(ii) $(x^2 - 1)^n \ge 0$ for even n,

and for a > 0, $(x^2 - 1)^n > 0$ for $0 \le x \le a$, except for x = 1 (if $a \ge 1$)

So the integrand is positive for a finite region in [0, a] and never negative. Hence the integral is positive, and so cannot equal zero.

(iii) We see that a_m must be greater than 1, otherwise the integrand would be negative over the whole range – except at the single point x = 1.

And
$$\int_0^1 (x^2 - 1)^{2m-1} dx < 0$$

As *a* is increased beyond 1, $\int_{1}^{a} (x^{2} - 1)^{2m-1} dx > 0$ and increases (from zero) without limit as *a* increases, and can therefore attain any positive value.

Hence, when $\int_{1}^{a} (x^{2} - 1)^{2m-1} dx = -\int_{0}^{1} (x^{2} - 1)^{2m-1} dx$, $\int_{0}^{a} (x^{2} - 1)^{2m-1} dx = 0$, and then $a_{m} = a$

(iv)
$$\int_0^{a_1} (x^2 - 1) dx = 0 \Rightarrow \left[\frac{1}{3}x^3 - x\right] \frac{a_1}{0} = 0$$

 $\Rightarrow \frac{1}{3}a_1^3 - a_1 = 0$

Then, as $a_1 > 0$, $a_1 = \sqrt{3}$

(v)
$$\int_0^{a_2} (x^2 - 1)^3 dx = 0$$

$$\Rightarrow \int_0^{a_2} x^6 - 3x^4 + 3x^2 - 1 \, dx = 0$$

fmng.uk

$$\Rightarrow \left[\frac{1}{7}x^7 - \frac{3}{5}x^5 + x^3 - x\right]_{0}^{a_{2}} = 0$$

$$\Rightarrow A = \frac{1}{7}a_{2}^{7} - \frac{3}{5}a_{2}^{5} + a_{2}^{3} - a_{2} = 0$$

When $a_{2} = \sqrt{2}, A = \frac{1}{7}(8\sqrt{2}) - \frac{3}{5}(4\sqrt{2}) + 2\sqrt{2} - \sqrt{2}$

$$= \frac{\sqrt{2}}{35}(40 - 84 + 35) < 0$$

When $a_{2} = \sqrt{3}, A = \frac{1}{7}(27\sqrt{3}) - \frac{3}{5}(9\sqrt{3}) + 3\sqrt{3} - \sqrt{3}$

$$= \frac{\sqrt{3}}{35}(135 - 189 + 70) = \frac{\sqrt{3}}{35}(16) > 0$$

Thus there is a change of sign of A, and hence $\sqrt{2} < a_2 < \sqrt{3}$ (as the (continuous) graph of A must cross the *x*-axis between $\sqrt{2} \& \sqrt{3}$).

(vi) From the given result, $\sqrt{2} < a_m$

And from the graph of $(x^2 - 1)^3$ in (i), we can see that

$$\int_0^1 (x^2 - 1)^{2m - 1} dx > -1;$$

ie the negative contribution to $I = \int_0^a (x^2 - 1)^{2m-1} dx$ is limited (for fixed $a > \sqrt{2}$).

The contribution to *I* from $\int_{1}^{\sqrt{2}} (x^2 - 1)^{2m-1} dx$ reduces as *m* increases, but is always positive.

Meanwhile the contribution to *I* from $\int_{\sqrt{2}}^{a} (x^2 - 1)^{2m-1} dx$ increases without limit, as as *m* increases.

And so, as *m* increases, $\int_{\sqrt{2}}^{a} (x^2 - 1)^{2m-1} dx$ will balance the reducing contributions from $\int_{0}^{1} (x^2 - 1)^{2m-1} dx$ and

 $\int_{1}^{\sqrt{2}} (x^2 - 1)^{2m-1} dx$, for increasingly smaller *a*.

Thus a_m decreases as m increases, and so, as $\sqrt{2} < a_m$, it follows that the limiting value of a_m is $\sqrt{2}$; ie this is the approximate value of a_m for very large m.