2022 MAT - Q3 (4 pages; 6/11/23)
Solution
(i) The curves intersect (or touch) where $\left(x^{2}-1\right)^{2}=\left(x^{2}-1\right)^{3}$

$$
\begin{aligned}
& \Leftrightarrow\left(x^{2}-1\right)^{2}\left(1-\left[x^{2}-1\right]\right)=0 \\
& \Leftrightarrow\left(x^{2}-1\right)^{2}\left(2-x^{2}\right)=0 \\
& \Leftrightarrow x= \pm 1 \text { (touching) or } \pm \sqrt{2} \text { (crossing) }
\end{aligned}
$$

The curve $y=\left(x^{2}-1\right)^{2}$ touches the x axis when $x= \pm 1$, and crosses the y axis when $y=1$.

The curve $y=\left(x^{2}-1\right)^{3}$ touches the x axis when $x= \pm 1$, and crosses the y axis when $y=-1$.

$$
y=\left(x^{2}-1\right)^{2}=(x-1)^{2}(x+1)^{2}
$$

and $y=\left(x^{2}-1\right)^{3}=(x-1)^{3}(x+1)^{3}$

(ii) $\left(x^{2}-1\right)^{n} \geq 0$ for even n,
and for $a>0,\left(x^{2}-1\right)^{n}>0$ for $0 \leq x \leq a$, except for $x=1$ (if $a \geq 1$)

So the integrand is positive for a finite region in $[0, a]$ and never negative. Hence the integral is positive, and so cannot equal zero.
(iii) We see that a_{m} must be greater than 1 , otherwise the integrand would be negative over the whole range - except at the single point $x=1$.

And $\int_{0}^{1}\left(x^{2}-1\right)^{2 m-1} d x<0$
As a is increased beyond $1, \int_{1}^{a}\left(x^{2}-1\right)^{2 m-1} d x>0$ and increases (from zero) without limit as a increases, and can therefore attain any positive value.

Hence, when $\int_{1}^{a}\left(x^{2}-1\right)^{2 m-1} d x=-\int_{0}^{1}\left(x^{2}-1\right)^{2 m-1} d x$,
$\int_{0}^{a}\left(x^{2}-1\right)^{2 m-1} d x=0$, and then $a_{m}=a$
(iv) $\int_{0}^{a_{1}}\left(x^{2}-1\right) d x=0 \Rightarrow\left[\frac{1}{3} x^{3}-x\right]_{0}^{a_{1}}=0$
$\Rightarrow \frac{1}{3} a_{1}{ }^{3}-a_{1}=0$
Then, as $a_{1}>0, a_{1}=\sqrt{3}$
(v) $\int_{0}^{a_{2}}\left(x^{2}-1\right)^{3} d x=0$
$\Rightarrow \int_{0}^{a_{2}} x^{6}-3 x^{4}+3 x^{2}-1 d x=0$

$$
\begin{aligned}
& \Rightarrow\left[\frac{1}{7} x^{7}-\frac{3}{5} x^{5}+x^{3}-x\right]_{0}^{a_{2}}=0 \\
& \Rightarrow A=\frac{1}{7} a_{2}^{7}-\frac{3}{5} a_{2}^{5}+a_{2}^{3}-a_{2}=0
\end{aligned}
$$

When $a_{2}=\sqrt{2}, A=\frac{1}{7}(8 \sqrt{2})-\frac{3}{5}(4 \sqrt{2})+2 \sqrt{2}-\sqrt{2}$
$=\frac{\sqrt{2}}{35}(40-84+35)<0$
When $a_{2}=\sqrt{3}, A=\frac{1}{7}(27 \sqrt{3})-\frac{3}{5}(9 \sqrt{3})+3 \sqrt{3}-\sqrt{3}$
$=\frac{\sqrt{3}}{35}(135-189+70)=\frac{\sqrt{3}}{35}(16)>0$
Thus there is a change of sign of A , and hence $\sqrt{2}<a_{2}<\sqrt{3}$ (as the (continuous) graph of A must cross the x-axis between $\sqrt{2} \& \sqrt{3})$.
(vi) From the given result, $\sqrt{2}<a_{m}$

And from the graph of $\left(x^{2}-1\right)^{3}$ in (i), we can see that
$\int_{0}^{1}\left(x^{2}-1\right)^{2 m-1} d x>-1 ;$
ie the negative contribution to $I=\int_{0}^{a}\left(x^{2}-1\right)^{2 m-1} d x$ is limited (for fixed $a>\sqrt{2}$).

The contribution to I from $\int_{1}^{\sqrt{2}}\left(x^{2}-1\right)^{2 m-1} d x$ reduces as m increases, but is always positive.

Meanwhile the contribution to I from $\int_{\sqrt{2}}^{a}\left(x^{2}-1\right)^{2 m-1} d x$ increases without limit, as as m increases.

And so, as m increases, $\int_{\sqrt{2}}^{a}\left(x^{2}-1\right)^{2 m-1} d x$ will balance the reducing contributions from $\int_{0}^{1}\left(x^{2}-1\right)^{2 m-1} d x$ and
$\int_{1}^{\sqrt{2}}\left(x^{2}-1\right)^{2 m-1} d x$, for increasingly smaller a.
Thus a_{m} decreases as m increases, and so, as $\sqrt{2}<a_{m}$,
it follows that the limiting value of a_{m} is $\sqrt{2}$; ie this is the approximate value of a_{m} for very large m.

