2022 MAT - Q2 (2 pages; 2/11/23)

Solution

(i) If $x^{2}-19 y^{2}=z$, then $z^{2}=\left(x^{2}-19 y^{2}\right)^{2}$
$=\left(x^{2}+19 y^{2}\right)^{2}-4 x^{2}\left(19 y^{2}\right)$
$=\left(x^{2}+19 y^{2}\right)^{2}-19(2 x y)^{2}$, so that $N=19$
(ii) $1^{\text {st }}$ Part

If $x=13 \& y=3$, then $z=13^{2}-19(3)^{2}=169-171=-2$

2nd Part

From (i), $z^{2}=\left(x^{2}+19 y^{2}\right)^{2}-19(2 x y)^{2}$,
so that $4=(169+171)^{2}-19(78)^{2}$
Thus the required $x \& y$ are 340 and 78 .
(iii) $1^{\text {st }}$ Part
$4=(340)^{2}-19(78)^{2} \Rightarrow 1=170^{2}-19(39)^{2}$,
so that the required $x \& y$ are 170 and 39 .
2 ${ }^{\text {nd }}$ Part
From (i), when $x^{2}-19 y^{2}=z$, then
$z^{2}=\left(x^{2}+19 y^{2}\right)^{2}-19(2 x y)^{2}$,
so that $1^{2}=\left(170^{2}+19(39)^{2}\right)^{2}-19(2(170)(39))^{2}$
Thus another solution to $x^{2}-19 y^{2}=1$
is $x=170^{2}+19(39)^{2}, y=2(170)(39)$

$$
\text { (iv) } x^{2}-25 y^{2}=1 \Rightarrow(x-5 y)(x+5 y)=1
$$

Then, as $x \& y$ are whole numbers, either $x-5 y=1 \& x+5 y=1$ (A)
or $x-5 y=-1 \& x+5 y=-1$ (B)
Adding the equations in (A) gives $2 x=2$, so that $x=1$
Adding the equations in (B) gives $2 x=-2$, so that $x=-1$
Thus there are no sol'ns with $x>1$.
(v) [Using the same idea as in (i)]

If $x^{2}-17 y^{2}=z$, then $z^{2}=\left(x^{2}-17 y^{2}\right)^{2}$
$=\left(x^{2}+17 y^{2}\right)^{2}-4 x^{2}\left(17 y^{2}\right)$
$=\left(x^{2}+17 y^{2}\right)^{2}-17(2 x y)^{2}$
[Note that we can't start with $x=1, y=0, z=1$, as this only leads to a 'new' sol'n of $x=1, y=0$]
[In (ii), we were given initial values of $x=13, y=3$; presumably the corresponding values with 17 in place of 19 are intended to be fairly easy to find.]
If $y=1$, then $x^{2}-17 y^{2}=x^{2}-17$, and we could try $x=4$, as this gives $x^{2}-17 y^{2}=-1$
and hence, from $\left(^{*}\right),(-1)^{2}=\left(x^{2}+17 y^{2}\right)^{2}-17(2 x y)^{2}$, so that a further sol'n of $x^{2}-17 y^{2}=1$ is $x=4^{2}+17(1)^{2}=33 \& y=2(4)(1)=8$
[As it turned out, the method wasn't quite the same as before, as we didn't need to divide through by anything as in (iii).]

