2022 MAT - Multiple Choice (7 pages; 6/9/23)

Q1/A

Case 1: $x \geq 0: x^{2}+1=3 x$,
so that $x^{2}-3 x+1=0$, and $x=\frac{3 \pm \sqrt{9-4}}{2}$; ie $x=\frac{3 \pm \sqrt{5}}{2}$
Case 2: $x<0$: $-x^{2}+1=-3 x$,
so that $x^{2}-3 x-1=0$, and $x=\frac{3 \pm \sqrt{9+4}}{2}$; ie $x=\frac{3-\sqrt{13}}{2}$, as $x<0$
So there are 3 real sol'ns

Answer is (d)

Q1/B

Referring to the diagram (by symmetry, all tangents will have the given property, and we can consider the tangent shown), if r_{n} is the radius of C_{n}, then $r_{n+1}=\sqrt{r_{n}{ }^{2}+1}$

Thus $r_{2}=\sqrt{1^{2}+1}=\sqrt{2}, r_{3}=\sqrt{(\sqrt{2})^{2}+1}=\sqrt{3}$ etc,
so that $r_{100}=\sqrt{100}=10$
Answer is (d)

Q1/C

$x^{2}-4 k x+y^{2}-4 y+8=k^{3}-k$
$\Leftrightarrow(x-2 k)^{2}-4 k^{2}+(y-2)^{2}+4=k^{3}-k$
$\Leftrightarrow(x-2 k)^{2}+(y-2)^{2}=k^{3}+4 k^{2}-k-4$
This will be the eq' n of a circle when $k^{3}+4 k^{2}-k-4>0$
[Noting that the numbers $1,-1 \& 4$ appear in the multiple choice options:]

By the Factor theorem, $k-1$ is seen to be a factor of
$k^{3}+4 k^{2}-k-4$,
giving $k^{3}+4 k^{2}-k-4=(k-1)\left(k^{2}+5 k+4\right)$
$=(k-1)(k+1)(k+4)$,
Considering the roots of the cubic $y=(k-1)(k+1)(k+4)$
(ie $-4,-1 \& 1),(k-1)(k+1)(k+4)>0$ when
$-4<k<-1$ or $k>1$
Answer is (b)

Q1/D

$$
\begin{aligned}
& a_{1}=8\left(3^{4}\right), a_{2}=8\left[8\left(3^{4}\right)\right]^{4}=8^{5} \cdot 3^{16}=2^{15} \cdot 3^{16} \\
& a_{3}=8\left[2^{15} \cdot 3^{16}\right]^{4}=2^{63} \cdot 3^{64}
\end{aligned}
$$

This suggests that $a_{10}=\frac{2^{\left(4^{10}\right)} \cdot 3^{\left(4^{10}\right)}}{2}=\frac{2^{\left(2^{20}\right)} \cdot 3^{\left(2^{20}\right)}}{2}=\frac{6^{\left(2^{20}\right)}}{2}$
Check: $a_{11}=8\left[\frac{2^{\left(4^{10}\right)} \cdot 3^{\left(4^{10}\right)}}{2}\right]^{4}=\frac{1}{2} \cdot 2^{\left(4 \times 4^{10}\right)} \cdot 3^{\left(4 \times 4^{10}\right)}=\frac{2^{\left(4^{11}\right)} \cdot 3^{\left(4^{11}\right)}}{2}$, as expected.

Answer is (e)

Q1/E

Constant term of $\left(\left[x+\frac{1}{x}\right]+1\right)^{4}$
is constant term of $\left[x+\frac{1}{x}\right]^{4}$

+ constant term of $4\left[x+\frac{1}{x}\right]^{3}$ (ie zero)
+ constant term of $6\left[x+\frac{1}{x}\right]^{2}$
+ constant term of $4\left[x+\frac{1}{x}\right]$ (ie zero)
$+1$
$=6+6(2)+1=19$
Answer is (c)

Q1/F
We know that (b), (c) \& (e) aren't correct!!
Also, $\sin 72^{\circ}>\sin 60^{\circ}=\frac{\sqrt{3}}{2}=\sqrt{\frac{3}{4}}=\sqrt{\frac{6}{8}}$, which rules out (d).

So the answer must be (a).

[Doing it 'properly': Let $\sin 72^{\circ}=x$, so that $\sin \left(5 \times 72^{\circ}\right)=$ $\sin 360^{\circ}=0$,
and hence $0=5 x-20 x^{3}+16 x^{5}$
$\Rightarrow x=0$ (which can be rejected)
or $16 x^{4}-20 x^{2}+5=0$
$\Rightarrow x^{2}=\frac{20 \pm \sqrt{400-320}}{32}=\frac{5 \pm \sqrt{5}}{8}$,
so that $x=\sqrt{\frac{5 \pm \sqrt{5}}{8}}$ (ie the positive root)
From the argument above (showing that $\sin 72^{\circ}>\sqrt{\frac{6}{8}}$), it follows that $\left.\sin 72^{\circ}=\sqrt{\frac{5+\sqrt{5}}{8}}\right]$

Q1/G

$n=1 \Rightarrow n^{4}+4=5$, so that (a) is incorrect.
[The presence of the $\sqrt{2} s$ means that the given result is of no use in its current form.]

Write $n^{4}+4=4\left(\left(\frac{n}{\sqrt{2}}\right)^{4}+1\right)$, and then $m=\frac{n}{\sqrt{2}}$
Then from the given result,
$m^{4}+1=\left(m^{2}+\sqrt{2} m+1\right)\left(m^{2}-\sqrt{2} m+1\right)$,
so that $\frac{n^{4}+4}{4}=\left(\frac{n^{2}}{2}+n+1\right)\left(\frac{n^{2}}{2}-n+1\right)$,
and hence $n^{4}+4=\left(n^{2}+2 n+2\right)\left(n^{2}-2 n+2\right)$
For $n^{4}+4$ to be prime, we require the smaller factor $n^{2}-2 n+2$ to equal 1,
so that $n^{2}-2 n+1=0$,
and hence $(n-1)^{2}=0$, so that $n=1$

Therefore the answer is (b).

Q1/H

The given eq'n \Rightarrow
$\log _{2}\left(2 x^{3}+7 x^{2}+2 x+3\right)=\log _{2}\left[(x+1)^{3}\right]+\log _{2} 2$
$=\log _{2}\left[2(x+1)^{3}\right]$
$\Rightarrow 2 x^{3}+7 x^{2}+2 x+3=2(x+1)^{3}=2\left(x^{3}+3 x^{2}+3 x+1\right)$,
so that $x^{2}-4 x+1=0$,
[we have to ensure that the logs are defined; ie $x+1>0$ and $\left.2 x^{3}+7 x^{2}+2 x+3>0\right]$
which has sol'ns $x=\frac{4 \pm \sqrt{12}}{2}=2 \pm \sqrt{3}$
As these are both positive, $x+1>0$ and $2 x^{3}+7 x^{2}+2 x+3>0$, so that there are 2 sol'ns.

Answer is (c)

$p_{2}=\sum_{r=0}^{5}$ Prob(Alice \& Bob both obtain r Heads)
$=\left[\left(\frac{1}{2}\right)^{5}\right]^{2}+\left[5\left(\frac{1}{2}\right)^{4}\left(\frac{1}{2}\right)\right]^{2}+\left[10\left(\frac{1}{2}\right)^{3}\left(\frac{1}{2}\right)^{2}\right]^{2}+\left[10\left(\frac{1}{2}\right)^{2}\left(\frac{1}{2}\right)^{3}\right]^{2}$
$+\left[5\left(\frac{1}{2}\right)\left(\frac{1}{2}\right)^{4}\right]^{2}+\left[\left(\frac{1}{2}\right)^{5}\right]^{2}$
$252\left(\frac{1}{2}\right)^{10}=\frac{63}{256}$

Answer is (a)

[No need to worry about p_{1}, but it could be determined from
$2 p_{1}+p_{2}=1$, as Prob(Bob obtains more Heads than Alice $)=$ Prob(Alice obtains more Heads than Bob), by symmetry.]

Q1/J

The problem is equivalent to solving the following eq'ns:
$y=m x+c$
$x^{2}+y^{2}=1$
$(x-3)^{2}+(y-1)^{2}=1$

Referring to the diagram, there are 4 possibilities for the line. Answer is (e).

