### **2022 MAT - Multiple Choice** (7 pages; 6/9/23)

#### Q1/A

Case 1:  $x \ge 0$ :  $x^2 + 1 = 3x$ , so that  $x^2 - 3x + 1 = 0$ , and  $x = \frac{3 \pm \sqrt{9-4}}{2}$ ; ie  $x = \frac{3 \pm \sqrt{5}}{2}$ Case 2: x < 0:  $-x^2 + 1 = -3x$ , so that  $x^2 - 3x - 1 = 0$ , and  $x = \frac{3 \pm \sqrt{9+4}}{2}$ ; ie  $x = \frac{3 - \sqrt{13}}{2}$ , as x < 0So there are 3 real sol'ns **Answer is (d)** 

Q1/B



Referring to the diagram (by symmetry, all tangents will have the given property, and we can consider the tangent shown), if  $r_n$  is the radius of  $C_n$ , then  $r_{n+1} = \sqrt{r_n^2 + 1}$ 

fmng.uk

Thus  $r_2 = \sqrt{1^2 + 1} = \sqrt{2}$ ,  $r_3 = \sqrt{(\sqrt{2})^2 + 1} = \sqrt{3}$  etc, so that  $r_{100} = \sqrt{100} = 10$ 

Answer is (d)

Q1/C

$$x^{2} - 4kx + y^{2} - 4y + 8 = k^{3} - k$$
  

$$\Leftrightarrow (x - 2k)^{2} - 4k^{2} + (y - 2)^{2} + 4 = k^{3} - k$$
  

$$\Leftrightarrow (x - 2k)^{2} + (y - 2)^{2} = k^{3} + 4k^{2} - k - 4$$

This will be the eq'n of a circle when  $k^3 + 4k^2 - k - 4 > 0$ 

[Noting that the numbers 1, -1 & 4 appear in the multiple choice options:]

By the Factor theorem, k - 1 is seen to be a factor of

 $k^{3} + 4k^{2} - k - 4$ , giving  $k^{3} + 4k^{2} - k - 4 = (k - 1)(k^{2} + 5k + 4)$ = (k - 1)(k + 1)(k + 4), Considering the roots of the cubic y = (k - 1)(k + 1)(k + 4)(ie -4, -1 & 1), (k - 1)(k + 1)(k + 4) > 0 when -4 < k < -1 or k > 1Answer is (b)

### Q1/D

 $a_{1} = 8(3^{4}), \ a_{2} = 8[8(3^{4})]^{4} = 8^{5} \cdot 3^{16} = 2^{15} \cdot 3^{16}$   $a_{3} = 8[2^{15} \cdot 3^{16}]^{4} = 2^{63} \cdot 3^{64}$ This suggests that  $a_{10} = \frac{2^{(4^{10})} \cdot 3^{(4^{10})}}{2} = \frac{2^{(2^{20})} \cdot 3^{(2^{20})}}{2} = \frac{6^{(2^{20})}}{2}$ Check:  $a_{11} = 8[\frac{2^{(4^{10})} \cdot 3^{(4^{10})}}{2}]^{4} = \frac{1}{2} \cdot 2^{(4 \times 4^{10})} \cdot 3^{(4 \times 4^{10})} = \frac{2^{(4^{11})} \cdot 3^{(4^{11})}}{2},$ as expected.
Answer is (e)

### Q1/E

Constant term of  $\left[\left[x + \frac{1}{x}\right] + 1\right]^4$ is constant term of  $\left[x + \frac{1}{x}\right]^4$ + constant term of 4  $\left[x + \frac{1}{x}\right]^3$  (ie zero) + constant term of 6  $\left[x + \frac{1}{x}\right]^2$ + constant term of 4  $\left[x + \frac{1}{x}\right]$  (ie zero) + 1 = 6 + 6(2) + 1 = 19 Answer is (c)

# Q1/F

We know that (b), (c) & (e) aren't correct!!

Also, 
$$sin72^\circ > sin60^\circ = \frac{\sqrt{3}}{2} = \sqrt{\frac{3}{4}} = \sqrt{\frac{6}{8}}$$
, which rules out (d).

## So the answer must be (a).

[Doing it 'properly': Let 
$$sin72^\circ = x$$
, so that  $sin(5 \times 72^\circ) =$ 

 $sin 360^\circ = 0$ , and hence  $0 = 5x - 20x^3 + 16x^5$  $\Rightarrow x = 0$  (which can be rejected)

or 
$$16x^4 - 20x^2 + 5 = 0$$
  
 $\Rightarrow x^2 = \frac{20 \pm \sqrt{400 - 320}}{32} = \frac{5 \pm \sqrt{5}}{8}$ ,  
so that  $x = \sqrt{\frac{5 \pm \sqrt{5}}{8}}$  (ie the positive root)

From the argument above (showing that  $sin72^{\circ} > \sqrt{\frac{6}{8}}$ ), it follows that  $sin72^{\circ} = \sqrt{\frac{5+\sqrt{5}}{8}}$ ]

# Q1/G

 $n = 1 \Rightarrow n^4 + 4 = 5$ , so that (a) is incorrect.

[The presence of the  $\sqrt{2}s$  means that the given result is of no use in its current form.]

Write 
$$n^4 + 4 = 4\left(\left(\frac{n}{\sqrt{2}}\right)^4 + 1\right)$$
, and then  $m = \frac{n}{\sqrt{2}}$ 

Then from the given result,

fmng.uk

 $m^{4} + 1 = (m^{2} + \sqrt{2}m + 1)(m^{2} - \sqrt{2}m + 1),$ so that  $\frac{n^{4}+4}{4} = (\frac{n^{2}}{2} + n + 1)(\frac{n^{2}}{2} - n + 1),$ and hence  $n^{4} + 4 = (n^{2} + 2n + 2)(n^{2} - 2n + 2)$ For  $n^{4} + 4$  to be prime, we require the smaller factor  $n^{2} - 2n + 2$ to equal 1,

so that  $n^2 - 2n + 1 = 0$ ,

and hence  $(n-1)^2 = 0$ , so that n = 1

Therefore the answer is (b).

#### Q1/H

The given eq'n  $\Rightarrow$   $log_2(2x^3 + 7x^2 + 2x + 3) = log_2[(x + 1)^3] + log_22$   $= log_2[2(x + 1)^3]$   $\Rightarrow 2x^3 + 7x^2 + 2x + 3 = 2(x + 1)^3 = 2(x^3 + 3x^2 + 3x + 1),$ so that  $x^2 - 4x + 1 = 0,$ [we have to ensure that the logs are defined; ie x + 1 > 0 and  $2x^3 + 7x^2 + 2x + 3 > 0$ ]

which has sol'ns  $x = \frac{4 \pm \sqrt{12}}{2} = 2 \pm \sqrt{3}$ 

As these are both positive, x + 1 > 0 and  $2x^3 + 7x^2 + 2x + 3 > 0$ , so that there are 2 sol'ns.

#### Answer is (c)

### Q1/I

$$p_{2} = \sum_{r=0}^{5} Prob(Alice \& Bob both obtain r Heads)$$
  
=  $\left[\left(\frac{1}{2}\right)^{5}\right]^{2} + \left[5\left(\frac{1}{2}\right)^{4}\left(\frac{1}{2}\right)\right]^{2} + \left[10\left(\frac{1}{2}\right)^{3}\left(\frac{1}{2}\right)^{2}\right]^{2} + \left[10\left(\frac{1}{2}\right)^{2}\left(\frac{1}{2}\right)^{3}\right]^{2}$   
+  $\left[5\left(\frac{1}{2}\right)\left(\frac{1}{2}\right)^{4}\right]^{2} + \left[\left(\frac{1}{2}\right)^{5}\right]^{2}$   
 $252\left(\frac{1}{2}\right)^{10} = \frac{63}{256}$ 

# Answer is (a)

[No need to worry about  $p_1$ , but it could be determined from  $2p_1 + p_2 = 1$ , as *Prob*(*Bob obtains more Heads than Alice*) = *Prob*(*Alice obtains more Heads than Bob*), by symmetry.]

# Q1/J

The problem is equivalent to solving the following eq'ns:

$$y = mx + c$$
  
 $x^{2} + y^{2} = 1$   
 $(x - 3)^{2} + (y - 1)^{2} = 1$ 

Referring to the diagram, there are 4 possibilities for the line. Answer is (e).