2021 MAT - Q3 (3 pages; 6/11/23)

Solution

(i) The point $(0,0)$ lies on the graph, and so $p(0)=0$.

At a turning point, the gradient is zero (by definition), and so $p^{\prime}(0)=0$.

Because $(0,0)$ is a turning point, the graph of $y=p(x)$ touches the x-axis $(y=0)$ at $(0,0)$.

This means that there are repeated roots of the equation $p(x)=0$ when $x=0$; ie two of the factors of $p(x)$ are $(x-0)$; ie $p(x)=x^{2} g(x)$, for some polynomial $g(x)$, as required.
[Alternatively:
As $p(0)=0,(x-0)$ is a factor of $p(x)$, by the Factor theorem.
So $p(x)=x h(x)$, for some polynomial $h(x)$.
Then, by the Chain rule, $p^{\prime}(x)=h(x)+x h^{\prime}(x)$
and so, $p^{\prime}(0)=h(0)+0$,
and therefore $0=h(0)$.
Then, by the Factor theorem, $(x-0)$ is a factor of $h(x)$,
so that $h(x)=x g(x)$, for some polynomial $g(x)$,
and hence $p(x)=x^{2} g(x)$.]
(ii) $r(x)=(x-a)^{2} k(x)$

Proof: Let $y=R(x)$ be the graph obtained by translating
$y=r(x)$ by an amount a to the left. This graph has a turning point at $(0,0)$, so that $R(x)=x^{2} g(x)$.

Translating $y=R(x)$ by an amount a to the right, to give $y=r(x)$, is achieved by replacing x by $x-a$, so that $r(x)=(x-a)^{2} g(x-a)$, or $r(x)=(x-a)^{2} k(x)$, after $g(x-a)=a_{1}(x-a)^{n}+a_{2}(x-a)^{n-1} \ldots$ is expanded to give a polynomial of the form $k(x)=b_{1} x^{n}+b_{2} x^{n-1}+\cdots$
(iii)(a) From (ii), $f(x)=(x-a)^{2} g_{1}(x)$
and $f(x)=(x-[-a])^{2} g_{2}(x)=(x+a)^{2} g_{2}(x)$
Thus both $(x-a)^{2} \&(x+a)^{2}$ are factors of $f(x)$,
and so $f(x)=k(x-a)^{2}(x+a)^{2}$, as $f(x)$ is a quartic.
(b) There is symmetry about the y-axis.

Proof: $f(-x)=k(-x-a)^{2}(-x+a)^{2}$
$=k(x+a)^{2}(a-x)^{2}$
$=k(x+a)^{2}(x-a)^{2}=f(x)$
(c) $x=0$ (by symmetry)
(iv) Any such polynomial must be of the form
$f(x)=k x^{2}(x-2)^{2}$ (in order to have turning points at
$(0,0) \&(2,0))$

In order for there to be a turning point at $(1,3)$, we require that
$f(1)=3$ (so that $k=3$) and $f^{\prime}(1)=0$
Now, $f^{\prime}(x)=3(2 x)(x-2)^{2}+3 x^{2}(2)(x-2)$
and so $f^{\prime}(1)=6+(-6)=0$
So the required polynomial does exist.
[The Official sol'ns use (iii), with $a=1$, and translate 1 to the right.]
(v) In order for there to be turning points at $(1,6)$ and $(4,6)$, the polynomial must have the form $f(x)=a(x-1)^{2}(x-4)^{2}+6$ Then $f(2)=3 \Rightarrow 4 a+6=3 \Rightarrow a=-\frac{3}{4}$

Now, $f^{\prime}(x)=2 a(x-1)(x-4)^{2}+2 a(x-1)^{2}(x-4)$
so that $f^{\prime}(2)=2 a(4)+2 a(-2)=4 a \neq 0$
Thus no such polynomial exists.
[The Official sol'ns employs a proof by contradiction, translating the supposed polynomial so as to produce turning points at $\pm a$, so that the remaining turning point has to lie at $x=0$, from (iii).]

