2021 MAT - Multiple Choice (7 pages; 9/9/22)

## Q1/A

The area is made up of 12 isosceles triangles with equal sides of length 1 , and an angle of $30^{\circ}$ between these sides.

Hence area of dodecagon is $(12) \frac{1}{2}(1)(1) \sin 30^{\circ}$
$=6\left(\frac{1}{2}\right)=3$ square units
So the answer is (e).

## Q1/B

$\int_{0}^{a} \sqrt{x}+x^{2} d x=5 \Leftrightarrow\left[\frac{1}{\left(\frac{3}{2}\right)} x^{\frac{3}{2}}+\frac{1}{3} x^{3}\right] \begin{aligned} & a \\ & 0\end{aligned}=5$
$\Leftrightarrow \frac{2}{3} a^{\frac{3}{2}}+\frac{1}{3} a^{3}=5$
[Note that $a^{3}$ can be made the subject of all but one of the multiple choice options.]

Let $b=a^{\frac{3}{2}}$, so that $2 b+b^{2}=15$, or $b^{2}+2 b-15=0$
$\Leftrightarrow(b+5)(b-3)=0$
$\Leftrightarrow a^{\frac{3}{2}}=-5$ or 3
And $a^{\frac{3}{2}}=3$ when $a=3^{\frac{2}{3}}$
So the answer is (c).
[To see if $a^{\frac{3}{2}}=-5$ has a solution:
$a^{\frac{3}{2}}=-5 \Rightarrow a^{3}=25 \Rightarrow a=+\sqrt[3]{25}$

But the graph of $y=a^{x}$ for positive $a$ always lies above the $x$ axis (If $a<1$, then $y=\left(\frac{1}{b}\right)^{x}=b^{-x}$, where $b>1$ ), and so $a^{\frac{3}{2}}=-5$ is not possible.)]

## Q1/C

[It is tempting to say that there can be no connection between
$p-a \& q-b$, and so options (b)-(e) cannot be correct.]
The tangent to $y=e^{x}$ passing through $\left(p, e^{p}\right)$ has equation
$\frac{y-e^{p}}{x-p}=e^{p}$, and crosses the $x$-axis at ( $a, 0$ ), where $\frac{0-e^{p}}{a-p}=e^{p}$,
so that $a-p=-1$
Thus $p-a=q-b=1$
So the answer is (c).

## Q1/D

[The graph of $y=1-e^{x}$ can be obtained by reflecting $y=e^{x}$ in the $x$-axis, and translating up by 1.]

The graph of $y=1-e^{x}$ passes through the Origin.
The graphs of $y=e^{x}$ and $y=1-e^{x}$ intersect when $e^{x}=1-e^{x}$ $\Leftrightarrow 2 e^{x}=1 \Leftrightarrow e^{x}=\frac{1}{2} \Leftrightarrow x=\ln \left(\frac{1}{2}\right)=-\ln 2$

The required area is

$$
\begin{aligned}
& \int_{-\ln 2}^{0} e^{x} d x-\int_{-\ln 2}^{0}\left(1-e^{x}\right) d x=\int_{-\ln 2}^{0} 2 e^{x}-1 d x \\
& =\left[2 e^{x}-x\right]_{-\ln 2}^{0}=2-(1+\ln 2)=1-\ln 2
\end{aligned}
$$

So the answer is (b).

## Q1/E

Let the number of $\binom{1}{1} s$ be $x$, so that the number of $\binom{3}{2} s$ is $6-x$.

Then we require $x+3(6-x)=10$ and $x+2(6-x)=8$;
ie $-2 x=-8$, so that $x=4$;
and $-x=-4$, so that $x=4$ again
$P(x=4)=\binom{6}{4}\left(\frac{1}{2}\right)^{4}\left(\frac{1}{2}\right)^{2}=\binom{6}{2} \cdot \frac{1}{2^{6}}=\frac{6(5)}{2^{7}}=\frac{15}{64}$
So the answer is (c).

## Q1/F

[From a sketch of $y=x^{3}-3 x=x\left(x^{2}-3\right)$, it appears as though there will be 3 points on the curve for which the tangent passes through $(2,0)$, but just to check:]
The gradient of the tangent is $3 x^{2}-3$, with $x=a$, and so the equation of the tangent is $\frac{y-\left(a^{3}-3 a\right)}{x-a}=3 a^{2}-3$

In order for the tangent to pass through $(2,0)$, we require:
$\frac{0-\left(a^{3}-3 a\right)}{2-a}=3 a^{2}-3$,
giving $-a^{3}+3 a=6 a^{2}-6-3 a^{3}+3 a$,
so that $2 a^{3}-6 a^{2}+6=0$, or $a^{3}-3 a^{2}+3=0$
Now the curve $y=x^{3}-3 x^{2}=x^{2}(x-3)$ has a repeated root at $x=0$ and a root at $x=3$ (see diagram).


The number of real roots of $\left(^{*}\right)$ will depend on the $y$ coordinate of the minimum point when the curve is shifted up by 3.

To find the minimum point of $y=x^{3}-3 x^{2}+3$ :
$\frac{d y}{d x}=0 \Rightarrow 3 x^{2}-6 x=0 \Rightarrow x(x-2)=0$
$x=0$ corresponds to the maximum and $x=2$ corresponds to the minimum

When $x=2, y=8-12+3=-1$.
So the minimum point lies below the $x$-axis, and there are 3 real roots of (*).

So the answer is (d).

## Q1/G

[We can try to pair off the terms in some way. This suggests the use of $\sin \theta=\cos (90-\theta)$.]

Now $\sin ^{2} \theta=1-\cos ^{2} \theta=1-\sin ^{2}\left(90^{\circ}-\theta\right)$.
So $\sin ^{2} 1^{\circ}+\sin ^{2} 89^{\circ}=1$
and so on, until $\sin ^{2} 44^{\circ}+\sin ^{2} 46^{\circ}=1$
Thus, the required sum is:
$44+\sin ^{2} 45^{\circ}+\sin ^{2} 90^{\circ}=44+\frac{1}{2}+1=45.5$
[Reassuringly, not 45 - which is probably what many candidates will guess at.]

## So the answer is (d).

## Q1/H

The graph will cross the $x$-axis when
$9-8 \sin x-6 \cos ^{2} x=1$
ie when $9-8 \sin x-6\left(1-\sin ^{2} x\right)=1$
or $6 \sin ^{2} x-8 \sin x+2=0$
or $3 \sin ^{2} x-4 \sin x+1=0$,
so that $(3 \sin x-1)(\sin x-1)=0$,
and hence $\sin x=\frac{1}{3}$ or 1
So the answer is (a).

## Q1/I

If $a_{n}$ is one more than the product of all previous terms, then $a_{3}=$ 43 , and only (b) or (e) are consistent with this.

We then see that (b) is equivalent to this definition ( $a_{n-1}-1$ is the product of all terms up to and including $a_{n-2}$ ).

So the answer is (b).

## Q1/J

The 4 sides are $\mathrm{AB}, \mathrm{BC}, \mathrm{CD}$ and DA , and the squares of these lengths are:

$$
\begin{aligned}
& (b-a)^{2}+(c-b)^{2} \\
& (c-b)^{2}+(d-c)^{2} \\
& (d-c)^{2}+(a-d)^{2} \\
& \&(a-d)^{2}+(b-a)^{2}
\end{aligned}
$$

So the 4 sides are the same length when
$(b-a)^{2}+(c-b)^{2}=(c-b)^{2}+(d-c)^{2}$
$=(d-c)^{2}+(a-d)^{2}=(a-d)^{2}+(b-a)^{2}$
which is equivalent to:
$(b-a)^{2}=(d-c)^{2},(c-b)^{2}=(a-d)^{2}$ and
$(d-c)^{2}=(b-a)^{2}$
ie just $(b-a)^{2}=(d-c)^{2} \&(c-b)^{2}=(a-d)^{2}$

There are 4 possibilities:
P: $b-a=d-c \& c-b=a-d$
$Q: b-a=d-c \& c-b=d-a$
$R: b-a=c-d \& c-b=a-d$
$S: b-a=c-d \& c-b=d-a$
$P \Rightarrow b-a=d-[a-d+b] \Rightarrow 2 b=2 d$, which isn't possible, as $a, b, c \& d$ are supposed to be distinct
$Q \Rightarrow b-a=d-[d-a+b] \Rightarrow 2 b=2 a$, which also isn't possible $R \Rightarrow b-a=[a-d+b]-d \Rightarrow 2 d=2 a$, which also isn't possible $S \Rightarrow b-a=[d-a+b]-d \Rightarrow 2 d=2 a$, which IS possible Both $b-a=c-d \& c-b=d-a$ can be written as $a-b+c-d=0$, so that if the 4 sides are the same length, then $a-b+c-d=0$

And if $a-b+c-d=0$, then
$(b-a)^{2}=(d-c)^{2} \&(c-b)^{2}=(a-d)^{2}$
and the 4 sides will then be the same length.
So the answer is (d).

