2021 MAT - Multiple Choice (7 pages; 9/9/22)

Q1/A

The area is made up of 12 isosceles triangles with equal sides of length 1, and an angle of 30° between these sides.

Hence area of dodecagon is $(12)\frac{1}{2}(1)(1)sin30^{\circ}$

 $= 6\left(\frac{1}{2}\right) = 3$ square units

So the answer is (e).

Q1/B

$$\int_{0}^{a} \sqrt{x} + x^{2} dx = 5 \iff \left[\frac{1}{\left(\frac{3}{2}\right)}x^{\frac{3}{2}} + \frac{1}{3}x^{3}\right]_{0}^{a} = 5$$
$$\Leftrightarrow \frac{2}{3}a^{\frac{3}{2}} + \frac{1}{3}a^{3} = 5$$

[Note that a^3 can be made the subject of all but one of the multiple choice options.]

Let
$$b = a^{\frac{3}{2}}$$
, so that $2b + b^2 = 15$, or $b^2 + 2b - 15 = 0$
 $\Leftrightarrow (b + 5)(b - 3) = 0$
 $\Leftrightarrow a^{\frac{3}{2}} = -5 \text{ or } 3$
And $a^{\frac{3}{2}} = 3$ when $a = 3^{\frac{2}{3}}$
So the answer is (c).
[To see if $a^{\frac{3}{2}} = -5$ has a solution:

 $a^{\frac{3}{2}} = -5 \Rightarrow a^3 = 25 \Rightarrow a = +\sqrt[3]{25}$

But the graph of $y = a^x$ for positive *a* always lies above the *x* axis (If a < 1, then $y = (\frac{1}{b})^x = b^{-x}$, where b > 1), and so $a^{\frac{3}{2}} = -5$ is not possible.)]

fmng.uk

Q1/C

[It is tempting to say that there can be no connection between p - a & q - b, and so options (b)-(e) cannot be correct.] The tangent to $y = e^x$ passing through (p, e^p) has equation $\frac{y-e^p}{x-p} = e^p$, and crosses the *x*-axis at (a, 0), where $\frac{0-e^p}{a-p} = e^p$, so that a - p = -1Thus p - a = q - b = 1So the answer is (c).

Q1/D

[The graph of $y = 1 - e^x$ can be obtained by reflecting $y = e^x$ in the *x*-axis, and translating up by 1.]

The graph of $y = 1 - e^x$ passes through the Origin.

The graphs of $y = e^x$ and $y = 1 - e^x$ intersect when $e^x = 1 - e^x$

$$\Leftrightarrow 2e^{x} = 1 \Leftrightarrow e^{x} = \frac{1}{2} \Leftrightarrow x = ln\left(\frac{1}{2}\right) = -ln2$$

The required area is

$$\int_{-ln2}^{0} e^{x} dx - \int_{-ln2}^{0} (1 - e^{x}) dx = \int_{-ln2}^{0} 2e^{x} - 1 dx$$
$$= [2e^{x} - x]_{-ln2}^{0} = 2 - (1 + ln2) = 1 - ln2$$

Q1/E

Let the number of $\binom{1}{1}s$ be x, so that the number of $\binom{3}{2}s$ is 6 - x. Then we require x + 3(6 - x) = 10 and x + 2(6 - x) = 8; ie -2x = -8, so that x = 4; and -x = -4, so that x = 4 again $P(x = 4) = \binom{6}{4}(\frac{1}{2})^4(\frac{1}{2})^2 = \binom{6}{2}\cdot\frac{1}{2^6} = \frac{6(5)}{2^7} = \frac{15}{64}$

So the answer is (c).

Q1/F

[From a sketch of $y = x^3 - 3x = x(x^2 - 3)$, it appears as though there will be 3 points on the curve for which the tangent passes through (2,0), but just to check:]

The gradient of the tangent is $3x^2 - 3$, with x = a, and so the equation of the tangent is $\frac{y - (a^3 - 3a)}{x - a} = 3a^2 - 3$

In order for the tangent to pass through (2,0), we require:

$$\frac{0-(a^3-3a)}{2-a} = 3a^2 - 3,$$

giving $-a^3 + 3a = 6a^2 - 6 - 3a^3 + 3a,$
so that $2a^3 - 6a^2 + 6 = 0$, or $a^3 - 3a^2 + 3 = 0$ (*)
Now the curve $y = x^3 - 3x^2 = x^2(x - 3)$ has a repeated root at $x = 0$ and a root at $x = 3$ (see diagram).

fmng.uk

The number of real roots of (*) will depend on the *y* coordinate of the minimum point when the curve is shifted up by 3.

To find the minimum point of $y = x^3 - 3x^2 + 3$:

$$\frac{dy}{dx} = 0 \Rightarrow 3x^2 - 6x = 0 \Rightarrow x(x - 2) = 0$$

x = 0 corresponds to the maximum and x = 2 corresponds to the minimum

When x = 2, y = 8 - 12 + 3 = -1.

So the minimum point lies below the *x*-axis, and there are 3 real roots of (*).

So the answer is (d).

Q1/G

[We can try to pair off the terms in some way. This suggests the use of $sin\theta = cos(90 - \theta)$.]

Now $sin^2\theta = 1 - cos^2\theta = 1 - sin^2(90^\circ - \theta)$.

So $sin^2 1^\circ + sin^2 89^\circ = 1$

and so on, until $sin^2 44^\circ + sin^2 46^\circ = 1$

Thus, the required sum is:

 $44 + \sin^2 45^\circ + \sin^2 90^\circ = 44 + \frac{1}{2} + 1 = 45.5$

[Reassuringly, not 45 – which is probably what many candidates will guess at.]

So the answer is (d).

Q1/H

The graph will cross the *x*-axis when

 $9 - 8sinx - 6cos^{2}x = 1$ ie when $9 - 8sinx - 6(1 - sin^{2}x) = 1$ or $6sin^{2}x - 8sinx + 2 = 0$ or $3sin^{2}x - 4sinx + 1 = 0$, so that (3sinx - 1)(sinx - 1) = 0, and hence $sinx = \frac{1}{3}$ or 1 So the answer is (a).

Q1/I

If a_n is one more than the product of all previous terms, then $a_3 = 43$, and only (b) or (e) are consistent with this.

We then see that (b) is equivalent to this definition $(a_{n-1} - 1)$ is the product of all terms up to and including a_{n-2} .

Q1/J

The 4 sides are AB, BC, CD and DA, and the squares of these lengths are:

$$(b-a)^{2} + (c-b)^{2}$$
$$(c-b)^{2} + (d-c)^{2}$$
$$(d-c)^{2} + (a-d)^{2}$$
$$\& (a-d)^{2} + (b-a)^{2}$$

So the 4 sides are the same length when

$$(b-a)^{2} + (c-b)^{2} = (c-b)^{2} + (d-c)^{2}$$
$$= (d-c)^{2} + (a-d)^{2} = (a-d)^{2} + (b-a)^{2}$$

which is equivalent to:

$$(b-a)^2 = (d-c)^2$$
, $(c-b)^2 = (a-d)^2$ and
 $(d-c)^2 = (b-a)^2$
ie just $(b-a)^2 = (d-c)^2$ & $(c-b)^2 = (a-d)^2$

There are 4 possibilities:

P: b - a = d - c & c - b = a - dQ: b - a = d - c & c - b = d - aR: b - a = c - d & c - b = a - dS: b - a = c - d & c - b = d - a $P \Rightarrow b - a = d - [a - d + b] \Rightarrow 2b = 2d$, which isn't possible, as a, b, c & d are supposed to be distinct $Q \Rightarrow b - a = d - [d - a + b] \Rightarrow 2b = 2a, \text{ which also isn't possible}$ $R \Rightarrow b - a = [a - d + b] - d \Rightarrow 2d = 2a, \text{ which also isn't possible}$ $S \Rightarrow b - a = [d - a + b] - d \Rightarrow 2d = 2a, \text{ which IS possible}$ Both b - a = c - d & c - b = d - a can be written as a - b + c - d = 0, so that if the 4 sides are the same length, then a - b + c - d = 0And if a - b + c - d = 0, then $(b - a)^2 = (d - c)^2 \& (c - b)^2 = (a - d)^2$

and the 4 sides will then be the same length.

So the answer is (d).