2020 MAT - Q6 (3 pages; 10/10/22)

Solution

(i) $g(1, k)=k$ [The single ball could be given to k people.]
(ii) $g(n, 1)=1$ [The balls are all given to the single person.]
(iii) The $g(n, k)$ ways can be classified as follows:
(a) The $1^{\text {st }}$ child receives at least one ball. Without loss of generality, it can be given the $1^{\text {st }}$ ball. Number of ways in which the remaining $n-1$ balls can be distributed to k children (including the $1^{\text {st }}$ child) is $g(n-1, k)$.
(b) The $1^{\text {st }}$ child receives no balls. Number of ways in which the n balls can be distributed to the other $k-1$ children is $g(n, k-1)$. So $g(n, k)=g(n-1, k)+g(n, k-1)$.
(iv) Hence $g(7,5)=g(6,5)+g(7,4)$
$=[g(5,5)+g(6,4)]+[g(6,4)+g(7,3)]$
$=[g(4,5)+g(5,4)]+2[g(5,4)+g(6,3)]+[g(6,3)+g(7,2)]$
$=g(4,5)+3 g(5,4)+3 g(6,3)+g(7,2)$
$=[g(3,5)+g(4,4)]+3[g(4,4)+g(5,3)]+3[g(5,3)+g(6,2)]$
$+[g(6,2)+g(7,1)]$
$=g(3,5)+4 g(4,4)+6 g(5,3)+4 g(6,2)+1$
$=[g(2,5)+g(3,4)]+4[g(3,4)+g(4,3)]+6[g(4,3)+g(5,2)]$

$$
\begin{aligned}
& +4[g(5,2)+g(6,1)]+1 \\
& =g(2,5)+5 g(3,4)+10 g(4,3)+10 g(5,2)+4+1 \\
& =[g(1,5)+g(2,4)]+5[g(2,4)+g(3,3)]+10[g(3,3)+ \\
& g(4,2)]+10[g(4,2)+g(5,1)]+5 \\
& =5+6 g(2,4)+15 g(3,3)+20 g(4,2)+10+5 \\
& =6[g(1,4)+g(2,3)]+15[g(2,3)+g(3,2)]+20[g(3,2)+ \\
& g(4,1)]+20 \\
& =24+21 g(2,3)+35 g(3,2)+20+20 \\
& =21[g(1,3)+g(2,2)]+35[g(2,2)+g(3,1)]+64 \\
& =63+56(3)+35+64=330
\end{aligned}
$$

[Note: The official sol'ns employs the following table, which cuts down on the amount of working. $g(7,5)$ can in fact be built up by starting with $g(2,2)$:

$$
g(3,2)=g(2,2)+g(3,1)=3+1 \text { etc }]
$$

n	$g(n, 1)$	$g(n, 2)$	$g(n, 3)$	$g(n, 4)$	$g(n, 5)$
1	1	2	3	4	5
2	1	3	6	10	15
3	1	4	10	20	35
4	1	5	15	35	70
5	1	6	21	56	126
6	1	7	28	84	210
7	1	8	36	120	330

Alternative (quicker) method (allowed by Official Sol'ns)
For $g(7,5)$, suppose for example that the $1^{\text {st }}$ child receives 2 balls, the $2^{\text {nd }}$ child receives 1 ball, the $3^{\text {rd }}$ child receives 0 balls, the $4^{\text {th }}$ child receives 1 ball, and the $5^{\text {th }}$ child receive 3 balls. This can be
denoted by $X X|X||X| X X X$ (where an \mid indicates that we are moving on to the next child).

Then $g(7,5)$ is the number of ways of choosing 4 positions for the |s out of the available $7+4$ positions.

So $g(7,5)=\binom{11}{4}=\frac{11(10)(9)(8)}{4!}=\frac{11(10)(9)(8)}{24}=11(5)(3)(2)=$ 330.
[In general, $g(n, k)=\binom{n+(k-1)}{k-1}$]
(v) First of all, a ball can be given to each of the k children (assuming $n \geq k$). The number of ways of handing out the balls then equals $g(n-k, k)$.

Thus $h(7,5)=g(2,5)=g(1,5)+g(2,4)$
$=5+g(1,4)+g(2,3)$
$=5+4+g(1,3)+g(2,2)$
$=9+3+3=15$

