2020 MAT - Q4 (4 pages; 26/10/21)
(There is a typo. in the $2^{\text {nd }}$ line of the question. It should read
"A function is said to be odd if $f(-x)=-f(x)$ [rather than
$f(-x)=-f(-x)])$
(i) (a) An even function has reflective symmetry about the y-axis.

An odd function has rotational symmetry of order 2 about the Origin.
(b) Consider the gradient of an even function when $x=a, f^{\prime}(a)$.

Then, by the symmetry in the y-axis, the gradient at $x=-a$ will be $-f^{\prime}(a)$

Thus $f^{\prime}(-a)=-f^{\prime}(a)$, so that the derivative of an even function is an odd function.

Now consider the gradient of an odd function when $x=a, g^{\prime}(a)$.
A rotation of 180° is equivalent to a reflection in the y-axis, followed by a reflection in the x-axis. The gradient changes its sign (but not its magnitude) with each reflection, and so $g^{\prime}(-a)=$ $-\left[-g^{\prime}(a)\right]=g^{\prime}(a)$.

Thus the derivative of an odd function is an even function.
(ii) Referring to the diagram below,
$A(-\theta)=A$ and $A(\theta)=A+B+C$

And, by symmetry, $A=D$.
Then $A(\theta)+A(-\theta)=(A+B+C)+A=A+B+C+D=\frac{1}{2}$, as required.
(b) Let L intersect the line $x+y=1$ at the point $P(a, b)$.

Then $A(\theta)=\frac{1}{2}(1) b$
Also, $\frac{b}{a}=\tan \left(\theta+\frac{\pi}{4}\right)=\frac{\tan \theta+1}{1-\tan \theta}$ and $a+b=1$,
so that $\frac{b(1-\tan \theta)}{1+\tan \theta}+b=1$,
and hence $b(1-\tan \theta)+b(1+\tan \theta)=1+\tan \theta$,
so that $b=\frac{1}{2}(1+\tan \theta)$ and therefore $A(\theta)=\frac{1}{4}(1+\tan \theta)$
[Check: $A(0)=\frac{1}{4}$ and $A\left(\frac{\pi}{4}\right)=\frac{1}{2}$]
(c)

(d) From (ii)(c), $A(\theta)$ has rotational symmetry of order 2 about the point $\left(0, \frac{1}{4}\right)$.

This can be deduced from (ii)(a) as follows:
Let $B(\theta)=A(\theta)-\frac{1}{4}$
Result to prove: $B(-\theta)=-B(\theta)$ or $B(-\theta)+B(\theta)=0$
Now $B(-\theta)+B(\theta)=\left(A(-\theta)-\frac{1}{4}\right)+\left(A(\theta)-\frac{1}{4}\right)$
$=A(-\theta)+A(\theta)-\frac{1}{2}$
$=0$, from (ii) (a)
(e) The rate of increase of the area $A(\theta)$ falls as θ increases from 0 to 45 (as the incremental area reduces) until $\theta=0$, when it
increases again. Thus the rate of increase of the area $\left(\frac{d A}{d \theta}\right)$ has a minimum at $\theta=0$, and so $\frac{d^{2} A}{d \theta^{2}}=\frac{d}{d \theta}\left(\frac{d A}{d \theta}\right)=0$ at this point (a point of inflexion).

