2020 MAT – Q4 (4 pages; 26/10/21)

(There is a typo. in the 2^{nd} line of the question. It should read

"A function is said to be odd if f(-x) = -f(x) [rather than

f(-x) = -f(-x)])

(i) (a) An even function has reflective symmetry about the *y*-axis.

An odd function has rotational symmetry of order 2 about the Origin.

(b) Consider the gradient of an even function when x = a, f'(a).

Then, by the symmetry in the *y*-axis, the gradient at x = -a will be -f'(a)

Thus f'(-a) = -f'(a), so that the derivative of an even function is an odd function.

Now consider the gradient of an odd function when x = a, g'(a).

A rotation of 180° is equivalent to a reflection in the *y*-axis, followed by a reflection in the *x*-axis. The gradient changes its sign (but not its magnitude) with each reflection, and so g'(-a) = -[-g'(a)] = g'(a).

Thus the derivative of an odd function is an even function.

(ii) Referring to the diagram below,

 $A(-\theta) = A$ and $A(\theta) = A + B + C$

And, by symmetry, A = D.

Then $A(\theta) + A(-\theta) = (A + B + C) + A = A + B + C + D = \frac{1}{2}$, as required.

(b) Let *L* intersect the line x + y = 1 at the point P(a, b).

Then $A(\theta) = \frac{1}{2}(1)b$ Also, $\frac{b}{a} = \tan\left(\theta + \frac{\pi}{4}\right) = \frac{tan\theta+1}{1-tan\theta}$ and a + b = 1, so that $\frac{b(1-tan\theta)}{1+tan\theta} + b = 1$, and hence $b(1 - tan\theta) + b(1 + tan\theta) = 1 + tan\theta$, so that $b = \frac{1}{2}(1 + tan\theta)$ and therefore $A(\theta) = \frac{1}{4}(1 + tan\theta)$ [Check: $A(0) = \frac{1}{4}$ and $A\left(\frac{\pi}{4}\right) = \frac{1}{2}$]

(d) From (ii)(c), $A(\theta)$ has rotational symmetry of order 2 about the point $\left(0, \frac{1}{4}\right)$.

This can be deduced from (ii)(a) as follows:

Let
$$B(\theta) = A(\theta) - \frac{1}{4}$$

Result to prove: $B(-\theta) = -B(\theta)$ or $B(-\theta) + B(\theta) = 0$

Now
$$B(-\theta) + B(\theta) = \left(A(-\theta) - \frac{1}{4}\right) + \left(A(\theta) - \frac{1}{4}\right)$$

$$= A(-\theta) + A(\theta) - \frac{1}{2}$$

(e) The rate of increase of the area $A(\theta)$ falls as θ increases from 0 to 45 (as the incremental area reduces) until $\theta = 0$, when it

fmng.uk

increases again. Thus the rate of increase of the area $\left(\frac{dA}{d\theta}\right)$ has a minimum at $\theta = 0$, and so $\frac{d^2A}{d\theta^2} = \frac{d}{d\theta}\left(\frac{dA}{d\theta}\right) = 0$ at this point (a point of inflexion).