
 fmng.uk 

1 
 

2020 MAT – Q2 (4 pages; 30/10/21)  

 

(i) 100 = 64 + 32 + 4 = 26 + 25 + 22 

So binary expansion of 100 is 1100100 

 

(ii) [At this point, it is a very good idea to read through to the end 

of the question, to get some ideas. We note that: 

- powers of 2 are bound to be relevant 

- some integers can’t be expressed as combinations of 𝑓 & 𝑔 

- for each integer that works, there will be only one way of 

obtaining a suitable combination of 𝑓 & 𝑔 

- there is a recurrence relation governing the total number of 

integers that work 

To gain an insight into the problem, we could examine how 36 

and 67 work: 

𝑔𝑓𝑔(1) = 𝑔𝑓[4(1)] = 𝑔[2(4)(1) + 1] = 4(2)(4)(1) + 4  

= 25 + 22 = 36  

𝑓𝑓𝑔𝑔(1) = 𝑓𝑓𝑔[4(1)] = 𝑓𝑓[4(4)(1)] = 𝑓[2(4)(4)(1) + 1]  

= 2(2)(4)(4)(1) + 2(1) + 1 = 26 + 21 + 20 = 67  

We notice that a final 𝑓 is needed in order to produce the odd 

number 67, and this is the key to the question. 

An alternative way of experimenting is to set up a tree diagram, to 

consider all combinations of 𝑓 & 𝑔, until 100 is reached. Although 

time-consuming, this has the advantage of guaranteeing an 

answer to (ii), and possibly seeing why only certain integers 
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work, and why the recurrence relation works. But unfortunately 

the tree diagram doesn’t help with the last two issues.] 

 

In order to produce 100, the last operation has to be 𝑔 (𝑓 would 

produce an odd number). This takes us back to 25. The preceding 

operation then has to be 𝑓 (𝑔 would produce a multiple of 4). This 

takes us back to 12. The preceding operation then has to be 𝑔, to 

take us back to 3. And the first operation then has to be 𝑓 (taking 

us back to 1). 

So 100 = 𝑔𝑓𝑔𝑓(1) 

 

(iii) If 200 is to work, the final operation would have to be 𝑔 (𝑓 

would produce an odd number) 

[just in case the marker hasn’t read the sol’n to (ii)] 

This takes us back to 50. But now neither 𝑓 𝑛𝑜𝑟 𝑔 works as the 

precding operation, as 50 is neither an odd number nor a multiple 

of 4. 

So 200 is not in S. 

 

(iv) For a given integer 𝑛 in S, we can establish the final operation, 

which must be either 𝑓, if 𝑛 is odd, or 𝑔, if 𝑛 is a multiple of 4. This 

takes us back to the integer 𝑚, say (where either 𝑛 = 2𝑚 + 1 or 

𝑛 = 4𝑚), and the process can be continued until 1 is reached. 

Thus there will be only one way of getting back to 1 from 𝑛, and 

therefore only one combination of 𝑓𝑠 & 𝑔𝑠 that will produce 𝑛, 

starting from 1. 
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(v) For an element of S that lies in the range [2𝑘+2, 2𝑘+3), either 

the last operation applied was 𝑔, in which case this arose from 

one of the 𝑢𝑘  elements of S in the range [2𝑘, 2𝑘+1) (there being a 

1-1 match between elements in the two ranges);  

or the last operation applied was 𝑓. 

In this case, consider an element 𝑟, where 2𝑘+1 ≤ 𝑟 < 2𝑘+2 

Then, applying 𝑓 to 𝑟, we get 

2𝑘+2 + 1 ≤ 2𝑟 + 1 < 2𝑘+3 + 1  

And, as 2𝑟 + 1 is odd, it cannot equal 2𝑘+3, 

and so 2𝑟 + 1 is in the range [2𝑘+2 + 1, 2𝑘+3). 

Also, 2𝑘+2 is not odd, and so cannot have 𝑓 as its last operation. 

Thus, there is a 1-1 match between elements in the range 

[2𝑘+1, 2𝑘+2) and elements in the range [2𝑘+2, 2𝑘+3) having 𝑓 as 

their last operation. 

So the 𝑢𝑘+2 elements in the range [2𝑘+2, 2𝑘+3) are accounted for 

by the 𝑢𝑘  elements in the range [2𝑘 , 2𝑘+1), together with the 𝑢𝑘+1 

elements in the range [2𝑘+1, 2𝑘+2); 

ie 𝑢𝑘+2 = 𝑢𝑘+1 + 𝑢𝑘 for 𝑘 ≥ 0  

 

(vi) From (v), ∑ 𝑢𝑟+2 =𝑘
𝑟=0 ∑ 𝑢𝑟+1 +𝑘

𝑟=0 ∑ 𝑢𝑟
𝑘
𝑟=0   (*) 

 

∑ 𝑢𝑟+2
𝑘
𝑟=0  is the number of elements of S in the range [22, 2𝑘+3), 

which equals 𝑠𝑘+2 − 2, as the elements 1 & 3 are missing from 

[22, 2𝑘+3) 
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∑ 𝑢𝑟+1
𝑘
𝑟=0  is the number of elements of S in the range [21, 2𝑘+2), 

which equals 𝑠𝑘+1 − 1, as the element 1 is missing from [21, 2𝑘+2) 

 

∑ 𝑢𝑟
𝑘
𝑟=0  is the number of elements of S in the range [20, 2𝑘+1), 

which equals 𝑠𝑘  

Hence, 𝑠𝑘+2 − 2 = (𝑠𝑘+1 − 1) + 𝑠𝑘  , 

and so 𝑠𝑘+2 = 𝑠𝑘+1 + 𝑠𝑘 + 1, as required. 

 

   

 

 


