2019 MAT - Q5 (2 pages; 27/10/21)
(i) Each subset must contain at least 2 elements. So if there are k subsets then there must be at least $2 k$ elements in total. If $k>\frac{n}{2}$ then $2 k>n$, so that the n elements available are not sufficient to produce the required total of at least $2 k$.
(ii) If $n=1$, then $f(n, 1)=0$, as subsets are required to contain at least 2 elements.

If $n>1$, then $f(n, 1)=1$, as there is only one possible partition: $\{1,2,3, \ldots, n\}$.
(iii) There will be two types of partition:
(a) Ones where $n+1$ appears in a subset of size 2 , and (b) Ones where $n+1$ only appears in a subset of size greater than 2 .

For (a), $n+1$ could be paired with any of the numbers $1,2,3, \ldots, n$, and in each case there will be $f(n-1, k-1)$ ways of partioning the remaining $n-1$ numbers into $k-1$ subsets (bearing in mind that the pair involving $n+1$ makes up the $k t h$ subset). However, this only holds if $k \geq 2$ (as, with $k=1, f(n-1,0)$ is not defined).
ie there are $n f(n-1, k-1)$ such partitions

For (b), $n+1$ can be thought of as being tacked onto one of $f(n, k)$ partitions occuring when there are just n numbers. In each case, there are k possible subsets for $n+1$ to be tacked onto.
ie there are $k f(n, k)$ such partitions
Hence $f(n+1, k)=n f(n-1, k-1)+k f(n, k)$, and this is valid for $k \geq 2$ and $k \leq n$, and so for $2 \leq k<n$ as well.
[It isn't clear why the range $2 \leq k \leq n$ hasn't been chosen.]
(iv) From (iii), $f(7,3)=6 f(5,2)+3 f(6,3)$
$=6[4 f(3,1)+2 f(4,2)]+3[5 f(4,2)+3 f(5,3)]$
$=24+27 f(4,2)+9 f(5,3)$
But $f(n, k)=0$ when $k>\frac{n}{2}$, from (i), and so
$f(7,3)=24+27 f(4,2)$
$=24+27[3 f(2,1)+2 f(3,2)]$
$=105$, as $f(2,1)=1[$ from (i) $]$, and $f(3,2)=0$, as $k>\frac{n}{2}$
(v) Each subset must contain at least 2 elements, so if there are only $2 n$ elements in total, each of the n subsets must contain exactly 2 elements.

There are $\binom{2 n}{2}$ ways of selecting the $1^{\text {st }}$ subset; then, for each of these, there are $\binom{2 n-2}{2}$ ways of selecting the $2^{\text {nd }}$ subset, but noting that $A B$ counts as a different choice from $B A$ (where $A \& B$ are subsets), so that there is over-counting.

So the number of ways of selecting the n subsets (with overcounting) is $\binom{2 n}{2}\binom{2 n-2}{2} \ldots\binom{2}{2}$
$=\frac{2 n(2 n-1)(2 n-2)(2 n-3) \ldots 2(1)}{(2!)^{n}}=\frac{(2 n)!}{2^{n}}$
As there are n ! ways of arranging the subsets, the over-counting can be removed by dividing by $n!$, to give
$f(2 n, n)=\frac{(2 n)!}{n!2^{n}}$

