2019 MAT - Q3 (3 pages; 6/11/20)
(i) 1st part
$\int_{0}^{c} x(c-x) d x=\left[\frac{1}{2} c x^{2}-\frac{1}{3} x^{3}\right]_{0}^{c}=\frac{1}{2} c^{3}-\frac{1}{3} c^{3}=\frac{1}{6} c^{3}$

2nd part

[The area of S is $\int_{a}^{b}(x-a)(b-x) d x$
Let $y=x-a$. Then $S=\int_{0}^{b-a} y(b-y-a) d y$
Let $c=b-a$. Then $S=\int_{0}^{c} y(c-y) d y=\frac{1}{6} c^{3}=\frac{1}{6}(b-a)^{3}$
However the question setter is presumably interested in the idea of translating S a distance a to the left, rather than making a substitution (although this is the algebraic equivalent).]

Consider the region S^{\prime} under the curve obtained by translating the given curve by a distance a to the left (so that the areas of $S^{\prime} \& S$ are equal).

Then the function for the new curve is obtained from that of the original curve by replacing x with $x+a$, so that $(x-a)(b-x)$ becomes $x(b-[x+a])=x(c-x)$, if we write $c=b-a$, and the limits of integration (when determining the area under the curve) change from $a \& b$ to $0 \& b-a=c$
Thus the area of S equals $\int_{0}^{c} x(c-x) d x=\frac{1}{6} c^{3}=\frac{1}{6}(b-a)^{3}$
[Arguably, some calculation is needed, in order to establish that $b-(x+a)=c-x]$
(ii) Let $f(x)=(x-a)(b-x)$

Then $f^{\prime}(x)=(b-x)+(x-a)(-1)=-2 x+b+a$
and $f^{\prime}(x)=m \Rightarrow x=\frac{b+a-m}{2}$ (1)
Also, $f(x)=m x$,
so that $(x-a)(b-x)=m x$,
and so from (1), $\left(\frac{b+a-m}{2}-a\right)\left(b-\frac{b+a-m}{2}\right)=m\left(\frac{b+a-m}{2}\right)$
$\Rightarrow(b+a-m-2 a)(2 b-b-a+m)=2 m(b+a-m)$
$\Rightarrow(b-a-m)(b-a+m)=2 m(b+a-m)$
$\Rightarrow(b-a)^{2}-m^{2}=2(b+a) m-2 m^{2}$
$\Rightarrow m^{2}-2(b+a) m+(b-a)^{2}=0$
$\Rightarrow m=\frac{2(b+a) \pm \sqrt{4(b+a)^{2}-4(b-a)^{2}}}{2}$
$=b+a \pm \sqrt{4 a b}$
And $(\sqrt{b}-\sqrt{a})^{2}=b+a-2 \sqrt{a b}$, which is the smaller of the two sol'ns in (2).

To show that $m=b+a+2 \sqrt{a b}$ isn't possible:
$x=\frac{b+a-m}{2}$, from (1),
and so the larger sol' $\mathrm{n} \Rightarrow x=\frac{-2 \sqrt{a b}}{2}<0$, which can be rejected.
[With hindsight, this complication could have been avoided if we had solved a quadratic in x, and then eliminated the negative root. Also, the method of using the discriminant, in the official sol'ns, is quicker - though the choice of root still has to be justified.]
(iii) 1st part

From (i), $S=\frac{1}{6}\left(\beta^{2}-1\right)^{3}$,
so $R=S \Leftrightarrow \frac{(2 \beta+1)(\beta-1)^{2}}{6}=\frac{1}{6}\left(\beta^{2}-1\right)^{3}$
$\Leftrightarrow(\beta-1)^{2}\left\{2 \beta+1-(\beta+1)^{2}\left(\beta^{2}-1\right)\right\}=0$
$\Leftrightarrow(\beta-1)^{2}\left\{2 \beta+1-\left(\beta^{2}+2 \beta+1\right)\left(\beta^{2}-1\right)\right\}=0$
$\Leftrightarrow(\beta-1)^{2}\left\{2 \beta+1-\left(\beta^{4}-\beta^{2}+2 \beta^{3}-2 \beta+\beta^{2}-1\right)\right\}=0$
$\Leftrightarrow(\beta-1)^{2}\left\{-\beta^{4}-2 \beta^{3}+4 \beta+2\right\}=0$
$\Leftrightarrow(\beta-1)^{2}\left\{\beta^{4}+2 \beta^{3}-4 \beta-2\right\}=0$, as required.

2nd part

Let $f(\beta)=\beta^{4}+2 \beta^{3}-4 \beta-2$
Then $f(1)=1+2-4-2=-3$
Also $f(\beta) \rightarrow \infty$ as $\beta \rightarrow \infty$, so that $f(\beta)>0$ for sufficiently large β.
Hence there is a change of sign, and therefore a root for some $\beta>1$ (as $f(\beta)$ is a continuous function).

3rd part

If $a(>0) \neq 1$, we can change the scale on the x-axis, so that $x^{\prime}=$ $\frac{x}{a}$, and then find a b^{\prime} that gives $S=R$. Then the required b equals $b^{\prime} a$.

