2019 MAT - Q2 (2 pages; 5/11/20)
(i) $N=1+2+3+\cdots+k=\frac{1}{2} k(k+1)$
(ii) $p_{k}(1)=2^{k}$
and also
$p_{k}(1)=a_{0}+a_{1}+\cdots+a_{N} \leq(N+1) a_{\max }\left(\right.$ as $a_{i} \leq a_{\max }$ for all $\left.i\right)$
So $2^{k} \leq(N+1) a_{\max }$, and $a_{\max } \geq \frac{2^{k}}{N+1}$, as required.
(iii) Once $k>i$, multiplication by $1+x^{k}$ has no effect on a_{i}
(multiplication by 1 leaves a_{i} unchanged, and multiplication by x^{k} only introduces coefficients of x^{r} for $r \geq k$)
(iv) $p_{k}\left(x^{-1}\right)=\left(1+x^{-1}\right)\left(1+x^{-2}\right) \ldots\left(1+x^{-k}\right)$
$=x^{-(1+2+\cdots+k)}(x+1)\left(x^{2}+1\right) \ldots\left(x^{k}+1\right)=x^{-N} p_{k}(x)$
$=a_{0} x^{-N}+a_{1} x^{-N+1}+\cdots+a_{N} x^{0}$
Also, $p_{k}\left(x^{-1}\right)=a_{0}+a_{1} x^{-1}+\cdots+a_{N} x^{-N}$
Then, equating coefficients of x^{-N+i} :
$a_{i}=a_{N-i} \quad($ valid for $0 \leq i \leq N)$, as required.
(v) If N is odd (eg 21, as in the student's example), then there will be $N+1$ coefficients, and (by the symmetry demonstrated) the first $\frac{N+1}{2}$ coefficients must feature all of the numbers $1,2, \ldots, a_{\max }$, if the student's guess is to be correct. We want to show that, for at least one value of $k, a_{\max }>\frac{N+1}{2}$

Now, from (ii), $a_{\max } \geq \frac{2^{k}}{N+1}$, so we need to show that $\frac{2^{k}}{N+1}>\frac{N+1}{2}$, for some $k ;$
ie that $2^{k+1}>(N+1)^{2}=\left(\frac{1}{2} k(k+1)+1\right)^{2}$, from (i);
ie that $2^{k+3}>(k(k+1)+2)^{2}$
As the LHS is an exponential function of k, whilst the RHS is only a quartic in k, this will be true for a sufficiently high value of k.

If instead N is even, then the first $\frac{N}{2}$ coefficients must feature all of the numbers $1,2, \ldots, a_{\text {max }}$, and we need to show that $\frac{2^{k}}{N+1}>\frac{N}{2}$, for some $k ;$
ie that $2^{k+1}>N(N+1)$, and the RHS will again be a quartic in k, and the same conclusion is reached.

