2018 MAT - Q6 (4 pages; 13/11/23)
(i) $\frac{2}{3}=\frac{1}{2}+\frac{1}{6}\left(\frac{1}{2}\right.$ is the $1^{\text {st }}$ reciprocal we can try, and $\left.\frac{2}{3}-\frac{1}{2}=\frac{1}{6}\right)$

For $\frac{2}{5}, \frac{1}{3}$ is the $1^{\text {st }}$ reciprocal we can try, and $\frac{2}{5}-\frac{1}{3}=\frac{1}{15}$,
So $\frac{2}{5}=\frac{1}{3}+\frac{1}{15}$
For $\frac{23}{40}, \frac{1}{2}$ is the $1^{\text {st }}$ reciprocal we can try, and $\frac{23}{40}-\frac{1}{2}=\frac{3}{40}$
Then we can try to find a friendly form for $\frac{3}{40}$.
As $\frac{3}{40}=\frac{1}{\left(\frac{40}{3}\right)}=\frac{1}{13+a}$, where $0<a<1, \frac{1}{14}$ is the $1^{\text {st }}$ reciprocal we can try, and $\frac{3}{40}-\frac{1}{14}=\frac{2}{560}=\frac{1}{280}$

So $\frac{23}{40}=\frac{1}{2}+\frac{1}{14}+\frac{1}{280}$
(ii) m has to satisfy $\frac{1}{m} \leq q$, so that $m \geq \frac{1}{q}=\frac{b}{a}$, and m must be the smallest such number, so that $\frac{1}{m-1}>q$; ie $m+1<\frac{1}{q}=\frac{b}{a}$

Hence $\frac{b}{a} \leq m<\frac{b}{a}+1\left({ }^{* *}\right)$
And $\frac{a}{b}-\frac{1}{m}=\frac{c}{d}$, where $c \& d$ have no common factors (as well as $a \& b)$.

Result to prove: $c<a\left({ }^{*}\right)$
We can try to prove instead that, as $\frac{a}{b}-\frac{1}{m}=\frac{m a-b}{b m}$,
it is the case that $m a-b<a$ (from which $\left(^{*}\right.$) follows, since if $\frac{c}{d}$ is the simplest form of $\frac{m a-b}{b m}$, then $c \leq m a-b$)

This is equivalent to showing that $m<\frac{a+b}{a}$ (as $a>0$);
Or $m<1+\frac{b}{a}$ (which is the case). Hence $c<a$.
(iii) Given $q=\frac{a}{b}$, m can be found as in (ii); ie m is the integer satisfying $\frac{b}{a} \leq m<\frac{b}{a}+1$ (*) *
Then $q-\frac{1}{m}=\frac{c}{d}$, and $q=\frac{1}{m}+\frac{c}{d}$, with $c<a\left({ }^{* *}\right)$
The procedure is then repeated for $q_{1}=\frac{c}{d}$, to produce $q_{1}-\frac{1}{m_{1}}=\frac{c_{1}}{d_{1}}$, with $c_{1}<c$

However, we have to show that $m_{1}>m$
[Referring to the examples in (i), it seems that m_{1} is generally significantly bigger than m, suggesting that it may not be hard to prove that $m_{1}>m$.]
Now $\frac{b}{a} \leq m<\frac{b}{a}+1$ and $\frac{d}{c} \leq m_{1}<\frac{d}{c}+1$, where $\frac{c}{d}<\frac{a}{b}$, so that $\frac{d}{c}>\frac{b}{a}$, and hence $m_{1} \geq m$

Now suppose that $m_{1}=m$.
Then we have $q-\frac{1}{m}-\frac{1}{m}=\frac{c_{1}}{d_{1}}\left({ }^{*}\right)$
Does this perhaps contradict the fact that $q-\frac{1}{m-1}<0$ (as m is supposed to be the smallest integer such that $\frac{1}{m} \leq q$; ie such that $\left.q-\frac{1}{m} \geq 0\right)$?

Consider $\frac{2}{m}-\frac{1}{m-1}$ (with a view to showing that this will be positive; ie that $\frac{2}{m}>\frac{1}{m-1}$)
$\frac{2}{m}-\frac{1}{m-1}=\frac{2(m-1)-m}{m(m-1)}=\frac{m-2}{m(m-1)}>0$, provided that $m>2$.
Thus, when $m>2, \frac{2}{m}>\frac{1}{m-1}$,
and then $q-\frac{1}{m-1}<0 \Rightarrow q-\frac{2}{m}<0$, so that (${ }^{*}$) is not possible, and therefore $m_{1} \neq m$.

Now, $m=1$ is not possible, as this gives $q-\frac{1}{m} \geq 0$,
so that $q \geq 1$, but we are told that $q<1$.
And if $m=2$, then $q-\frac{2}{m} \geq 0 \Rightarrow q \geq 1$ also.
Thus, $m_{1}>m$, as required.
The process is then repeated, to give
$q_{2}-\frac{1}{m_{2}}=\frac{c_{2}}{d_{2}}$, with $c_{2}<c_{1}<c<a$,
and so on until we reach $c_{n}=0$ (after a finite number of steps) (noting that, at each stage, $\frac{1}{m_{r}} \leq q_{r}$, so that $q_{r}-\frac{1}{m_{r}} \geq 0$, and hence $c_{r} \geq 0$)

Thus we arrive at $q-\frac{1}{m}-\frac{1}{m_{1}}-\cdots-\frac{1}{m_{n}}=0$, and so $q=\frac{1}{m}+\frac{1}{m_{1}}+\cdots+\frac{1}{m_{n}}$, where the m_{i} are distinct.
(iv) $\frac{4}{13}=\frac{1}{\left(\frac{13}{4}\right)}=\frac{1}{3+a}$, where $0<a<1$,
so that we can write $\frac{4}{13}-\frac{1}{4}=\frac{c}{d}\left(\right.$ with $\left.\frac{13}{4} \leq 4<\frac{13}{4}+1\right)$
and $\frac{c}{d}=\frac{4}{13}-\frac{1}{4}=\frac{3}{52}$

Then $\frac{3}{52}=\frac{1}{\left(\frac{52}{3}\right)}=\frac{1}{17+b}$, where $0<b<1$,
so that we can write $\frac{3}{52}-\frac{1}{18}=\frac{e}{f} \quad\left(\right.$ with $\left.\frac{52}{3} \leq 18<\frac{52}{3}+1\right)$
and $\frac{e}{f}=\frac{3}{52}-\frac{1}{18}=\frac{2}{52(18)}=\frac{1}{468}$
Thus $\frac{4}{13}=\frac{1}{4}+\frac{1}{18}+\frac{1}{468}$
(v) Let R be any rational number.

Then we can write $R=\left(\sum_{n=1}^{N} \frac{1}{n}\right)+\frac{a}{b}$, where $0 \leq \frac{a}{b}<\frac{1}{N+1}$, for some N. (\#)

We need to show that $\frac{a}{b}$ can be written in the friendly form $\frac{1}{m}+\frac{1}{m_{1}}+\cdots$, such that $m>N$ (so that all the reciprocals in the expansion for R are distinct).

From (**) in (ii), $\frac{b}{a} \leq m<\frac{b}{a}+1$,
so that $m \geq \frac{b}{a}>N+1$, from (\#),
and therefore $m>N+1>N$, as required.

