2018 MAT paper - Q2 (3 pages; 18/10/23)

Solution

(i) $T S(x, y)=T(x+1, y)=(-y, x+1)$
and $S T(x, y)=S(-y, x)=(-y+1, x)$
Thus $\operatorname{TS}(x, y) \neq S T(x, y)$
(ii) $T^{2}(x, y)=T(-y, x)=(-x,-y)$
$T^{3}(x, y)=T(-x,-y)=(y,-x)$
$T^{4}(x, y)=T(y,-x)=(x, y)$
Thus $T^{n}(x, y)=T(x, y)$ when n is a multiple of 4 .
(iii) $1^{\text {st }}$ Part
$(x, y) \rightarrow(-x,-y)$ from T^{2}
Then $(-x,-y) \rightarrow(-x+1,-y)$ from S
And $(-x+1,-y) \rightarrow(x-1, y)$ from T^{2}
Thus $T^{2} S T^{2}(x, y)=(x-1, y)$

2nd Part

Justification for 5 being the minimum number of transformations needed:

At least one S is required, in order to produce the 1 in $(x-1, y)$.
Each application of T causes the x to switch from appearing in the $1^{\text {st }}$ to appearing in the $2^{\text {nd }}$ coordinate, or vice-versa. Hence, to obtain $(x-1, y)$ from (x, y), there must be an even number of $T s$.

But each application of T that leaves the x in the $1^{\text {st }}$ coordinate, also changes the sign of the x, so that the required number of $T s$ cannot be two (otherwise we would be left with a $-x$ in the $1^{\text {st }}$ coordinate). But as no $T s$ is not possible (as no -1 would ever appear), the minimum number of $T s$ is 4 , which together with the required S means that 5 is the minimum total number of transformations.
(iv) $(a, 0)$ can be obtained from $(0,0)$ by a or $-a$ applications of either S or U (depending on whether a is positive or negative).

To show that (a, b) can then be obtained from $(a, 0)$:
$T^{3}(x, y)=(y,-x)$, from (ii)
Then $S T^{3}(x, y)=(y+1,-x)$
and $\operatorname{TST}^{3}(x, y)=(x, y+1)$
Similarly, $\operatorname{TUT}^{3}(x, y)=(x, y-1)$
Thus b or $-b$ applications of either S or U (depending on whether b is positive or negative) will convert $(a, 0)$ to (a, b).

And so (a, b) can be obtained from $(0,0)$.

(v) $1^{\text {st }}$ Part

C has equation $y=(x+1)^{2}+1$
S represents a translation of 1 in the x direction
So, applying S to C produces $y=([x-1]+1)^{2}+1=x^{2}+1$

2nd Part

T represents a reflection in $y=x$, followed by a reflection in the y-axis.

The reflection in $y=x$ produces $x=(y+1)^{2}+1$,
And then the reflection in the y-axis produces $-x=(y+1)^{2}+1$
Or $x+(y+1)^{2}+1=0$

