2017 MAT – Q7 (2 pages; 14/10/22)

Solution

(i)
$$R(a + b) = R(b) + R(a)$$

 $R(R(a)) = a$

(ii)
$$S_k(a + b) = b + R(a)$$

 $S_k(S_k(a + b)) = S_k(b + R(a)) = R(a) + R(b)$

(iii)
$$S_5(a) = (6,7,8,5,4,3,2,1)$$

 $S_5(S_5(a)) = (3,2,1,4,5,8,7,6) = (3,2,1) + (4,5) + (8,7,6)$
 $S_5(S_5(S_5(a))) = (8,7,6,5,4,1,2,3)$
 $S_5(S_5(S_5(S_5(a)))) = (1,2,3,4,5,6,7,8) = a$

(iv) Let a = b + c, where *b* has length *k* and *c* has length n - kThen $S_k(a) = c + R(b)$ Now *c* has length $n - k \le \frac{n}{2} \le k$. Let R(b) = d + e, where *d* has length k - (n - k) = 2k - nand *e* has length k - (2k - n) = n - kThen $S_k(S_k(a)) = e + R(c + d) = e + R(d) + R(c)$ Now e + R(d) has length (n - k) + (2k - n) = kSo $S_k(S_k(a)) = R(c) + R(e + R(d))$ = R(c) + R(R(d)) + R(e) = R(c) + d + R(e)

As *e*, and hence
$$R(e)$$
, has length $n - k$, $R(c) + d$ has length *k* (as
 $S_k(S_k(a))$) has the same length as *a*).
So $S_k(S_k(S_k(a))) = R(e) + R(R(c) + d)$
 $= R(e) + R(d) + R(R(c)) = R(e) + R(d) + c$
As $R(b) = d + e$ (as defined earlier),
 $b = R(R(b)) = R(d + e) = R(e) + R(d)$
So $S_k(S_k(S_k(a))) = b + c = a$, as required.

fmng.uk

(v) Consider a = 1,2,3,4,5 with k = 2

[Probably a better bet than a = 1,2,3 with k = 1, in order not to have the original order after 4 applications.]

Then $S_2(a) = 3,4,5,2,1$ $S_2(S_2(a)) = 5,2,1,4,3$ $S_2(S_2(S_2(a))) = 1,4,3,2,5$ $S_2(S_2(S_2(a))) = 3,2,5,4,1$; ie not the original order Performing S_2 5 times gives: 5,4,1,2,3

Performing S_2 6 times gives 1,2,3,4,5 ; so S_2 has to be performed 6 times.