2016 MAT - Q4 (3 pages;18/11/23)

Solution

(i)

(not to scale)
The triangles T_{1} and T_{2} are both right-angled, have a side of length 1 , and share a common hypotenuse. They are therefore congruent, and so both have an angle of α at 0 .

Hence the base of T_{2} is $\frac{1}{\tan \alpha}$, and so the centre of circle C_{1} is $(\cot \alpha, 1)$.
(ii) The equation of C_{1} is therefore $(x-\cot \alpha)^{2}+(y-1)^{2}=1$
[Unusually, this part doesn't seem to be relevant to the rest of the question.]
(iii) Similarly, the centre of circle C_{2} is $(3 \cot \alpha, 3)$.

When the two circles are touching, the length of the line segment joining the centres of the two circles is $1+3=4$ (as the common tangent to the two circles is perpendicular to the radii of the two circles at their point of contact).

By Pythagoras' theorem, $(3 \cot \alpha-\cot \alpha)^{2}+(3-1)^{2}=4^{2}$,
so that $4 \cot ^{2} \alpha+4=16$,
and hence $4 \operatorname{cosec}^{2} \alpha=16$,
so that $\sin ^{2} \alpha=\frac{1}{4}$,
and therefore $\sin \alpha=\frac{1}{2}$ and $\alpha=\frac{\pi}{6}$ (given that $\alpha<\frac{\pi}{4}$)
(iv) Let the radius of C_{3} be r.

Applying the same method as in (ii),
$(r \cot \alpha-3 \cot \alpha)^{2}+(r-3)^{2}=(3+r)^{2}$,
giving $(r-3)^{2}\left(\cot ^{2} \alpha+1\right)=(3+r)^{2}$,
Then, as $\cot ^{2} \alpha+1=\operatorname{cosec}^{2} \alpha=\frac{1}{\sin ^{2} \alpha}=\frac{1}{\left(\frac{1}{4}\right)}=4$,
we have $3 r^{2}-30 r+27=0$,
or $r^{2}-10 r+9=0$,
so that $(r-9)(r-1)=0$, and hence $r=9\left(r=1\right.$ giving C_{1}, and C_{3} is to be larger than C_{2})

Thus the radius of C_{3} is 9 .
[This result could just have been obtained by noting that the ratio of the radii of C_{3} and C_{2} must be the same as that of the radii of C_{2} and C_{1}. (We can consider a change of scale, writing $x^{\prime}=3 x$, and apply this to C_{1} and C_{2}.)]
(v) The area of triangle T_{1} is $\frac{1}{2} \cot \left(\frac{\pi}{6}\right)(1)=\frac{1}{2 \tan \left(\frac{\pi}{6}\right)}=\frac{\sqrt{3}}{2}$

Consider the triangle $T_{1}{ }^{\prime}$, which bears the same relation to
C_{2} that T_{1} bears to C_{1}.
Then the area of triangle $T_{1}{ }^{\prime}$ is $\frac{1}{2}\left(3 \cot \left(\frac{\pi}{6}\right)\right)(3)=\frac{9 \sqrt{3}}{2}$
The required area is then equal to $\frac{9 \sqrt{3}}{2}-\frac{\sqrt{3}}{2}$, less the relevant sectors of C_{1} and C_{2}.

The angles of these sectors are
$\pi-\left(\frac{\pi}{2}-\alpha\right)=\frac{\pi}{2}+\frac{\pi}{6}=\frac{2 \pi}{3}$ for C_{1}
and $\frac{\pi}{2}-\alpha=\frac{\pi}{3}$ for C_{2}
So the required area is $4 \sqrt{3}-\pi(1)^{2} \times \frac{\left(\frac{2 \pi}{3}\right)}{2 \pi}-\pi(3)^{2} \times \frac{\left(\frac{\pi}{3}\right)}{2 \pi}$
$=4 \sqrt{3}-\pi\left(\frac{1}{3}+\frac{3}{2}\right)$
$=4 \sqrt{3}-\frac{11 \pi}{6}$ sq. units

