2016 MAT - Q2 (3 pages; 3/11/23)

Solution

(i) $A(B(x))=2(3 x+2)+1=6 x+5$
and $B(A(x))=3(2 x+1)+2=6 x+5$
(ii) $A^{2}(x)=2(2 x+1)+1=2^{2} x+(2+1)$
$A^{3}(x)=2\left[2^{2} x+(2+1)\right]+1=2^{3} x+\left(2^{2}+2+1\right)$
And so $A^{n}(x)=2^{n} x+\left(2^{n-1}+2^{n-2}+\cdots+2+1\right)$
$=2^{n} x+\frac{2^{n}-1}{2-1}=2^{n}(x+1)-1$
[This agrees with $A^{2}(x)$ and $A^{3}(x)$.]
(iii) First of all, by (i), a sequence such as $A(B(A(A(B(x))))$), for example, is equal to

$$
\begin{aligned}
& A(A(B(A(B(x))))) \\
= & A(A(A(B(B(x))))) \\
= & A^{3}\left(B^{2}(x)\right)
\end{aligned}
$$

And so any combination of p As and Q Bs will be equal to $A^{p}\left(B^{q}(x)\right)$

Now $B^{2}(x)=3(3 x+2)+2=3^{2} x+3(2)+2$
$B^{3}(x)=3\left[3^{2} x+3(2)+2\right]+2=3^{3} x+\left(3^{2}+3+1\right)(2)$
And so $B^{n}(x)=3^{n} x+\left(3^{n-1}+3^{n-2}+\cdots+3+1\right)(2)$
$=3^{n} x+\frac{\left(3^{n}-1\right)(2)}{3-1}=3^{n}(x+1)-1$

Then $A^{p}\left(B^{q}(x)\right)=2^{p}\left(B^{q}(x)+1\right)-1$
$=2^{p}\left(\left[3^{q}(x+1)-1\right]+1\right)-1$
$=2^{p} 3^{q}(x+1)-1$

Given that $A^{p}\left(B^{q}(x)\right)=108 x+c($ for all $x)$,
it follows that $2^{p} 3^{q}=108$ and $2^{p} 3^{q}-1=c$, so that $c=107$
As $108=2^{2} 3^{3}$, the number of orders is the number of ways of choosing the 2 places for A out of the total of 5 places for A and B;
ie $\binom{5}{2}=\frac{5(4)}{2!}=10$
[Note: This part of the question could have been answered just by noting that the coefficient of x had to be $2^{p} 3^{q}$. The derivation of $A^{p}\left(B^{q}(x)\right)=2^{p} 3^{q}(x+1)-1$ is only needed to establish c.]
(iv) As above, $c=107$
(v) We require $\left[2^{m_{1}} 3^{n_{1}}(x+1)-1\right]+\left[2^{m_{2}} 3^{n_{2}}(x+1)-1\right]$ $+\cdots+\left[2^{m_{k}} 3^{n_{k}}(x+1)-1\right]=214 x+92($ for all $x)$

Then $2^{m_{1}} 3^{n_{1}}+2^{m_{2}} 3^{n_{2}}+\cdots+2^{m_{k}} 3^{n_{k}}=214$
and $2^{m_{1}} 3^{n_{1}}+2^{m_{2}} 3^{n_{2}}+\cdots+2^{m_{k}} 3^{n_{k}}-k=92$,
which gives $k=214-92=122$
As the $m_{i} \& n_{i}$ must be positive integers,
$2^{m_{1}} 3^{n_{1}}+2^{m_{2}} 3^{n_{2}}+\cdots+2^{m_{k}} 3^{n_{k}} \geq 2(3)(122)=732>214$
Thus (*) cannot be satisfied; ie no such $m_{i} \& n_{i}$ exist.
[The Official Sol'n says that the x coefficient of $A^{m_{i}} B^{n_{i}}$ can never be less than 2 , but this seems to (incorrectly) allow $n_{i}=0$ (with $\left.m_{i} \geq 1\right)$.]

