2015 MAT Paper - Q3 (4 pages; 24/9/20)
(i) [We can of course look ahead in the question, to see what sort of functions might be used.]
$f(x)=x, g(x)=x+\frac{1}{100}$
(ii) $|f(x)-g(x)|=\frac{1}{400} \sin \left(4 x^{2}\right)$ when $0 \leq x \leq \frac{1}{2}$
(as $4\left(\frac{1}{2}\right)^{2}=1<\pi$, so that $\sin \left(4 x^{2}\right)>0$
and $\frac{1}{400} \sin \left(4 x^{2}\right) \leq \frac{1}{400} \sin (1)<\frac{1}{400} \sin \left(\frac{\pi}{3}\right)=\frac{1}{400}\left(\frac{\sqrt{3}}{2}\right)$
$=\frac{1}{320}\left(\frac{320 \sqrt{3}}{800}\right)=\frac{1}{320}\left(\frac{4 \sqrt{3}}{10}\right)$
$<\frac{1}{320}\left(\frac{4 \times 1.8}{10}\right)=\frac{1}{320}(0.72)<\frac{1}{320}$
(iii) $g(x)=1+\int_{0}^{x} 1+t+\frac{t^{2}}{2}+\frac{t^{3}}{6} d t$
$=1+\left[t+\frac{t^{2}}{2}+\frac{t^{3}}{6}+\frac{t^{4}}{24}\right]_{0}^{x}$
$=1+x+\frac{x^{2}}{2}+\frac{x^{3}}{6}+\frac{x^{4}}{24}$
Then $|f(x)-g(x)|=\frac{x^{4}}{24} \leq \frac{1}{16(24)}=\frac{1}{384}<\frac{1}{320}$ when $0 \leq x \leq \frac{1}{2}$
(iv) RHS $=g(x)-f(x)+\int_{0}^{x}(h(t)-f(t)) d t$
$=1+\int_{0}^{x} f(t) d t-f(x)+\int_{0}^{x} h(t) d t-\int_{0}^{x} f(t) d t$
$=1+\int_{0}^{x} h(t) d t-f(x)=h(x)-f(x)=$ LHS
(v) [This is a stand-alone result; ie not needing to be derived from the earlier results.]

Consider the area under the graph of $h(t)-f(t)$, between $0 \& x$.
Assume for the moment that the graph lies above the t-axis.
The maximum height of the function is $h\left(x_{0}\right)-f\left(x_{0}\right)$, and the area under the graph is no greater than the rectangle with base x and height $h\left(x_{0}\right)-f\left(x_{0}\right)$.
As $x \leq \frac{1}{2}$, the rectangle has area $\leq \frac{1}{2}\left(h\left(x_{0}\right)-f\left(x_{0}\right)\right)$.
As the integral would have a smaller value if part of the graph were to lie below the t-axis,

$$
\int_{0}^{x}(h(t)-f(t)) d t \leq \frac{1}{2}\left(h\left(x_{0}\right)-f\left(x_{0}\right)\right) \text { whenever } 0 \leq x \leq \frac{1}{2}
$$

(vi) Result to prove: $|f(x)-h(x)| \leq \frac{1}{100}$ for $0 \leq x \leq \frac{1}{2}$
or, as we are told that $f(x) \leq h(x)$,
and if we set $k(x)=h(x)-f(x)$,
result to prove is $k(x) \leq \frac{1}{100}$
From (iv), using (iii) \& (v),
$k(x) \leq \frac{1}{320}+\frac{1}{2} k\left(x_{0}\right)$
(since, from the working of (iii), $g(x)>f(x)$, so that
$\left.g(x)-f(x)=|g(x)-f(x)| \leq \frac{1}{320}\right)$
Also, $k(x) \leq k\left(x_{0}\right)$
(B)
[At first sight, this doesn't look promising, as the inequalities in (A) \& (B) seem to be in unfavourable directions:
$k(x) \leq \frac{1}{320}+\frac{1}{2} k\left(x_{0}\right) \Rightarrow k\left(x_{0}\right) \geq 2 k(x)-\frac{1}{160} \quad$, but this can't be usefully combined with (B).

However, if we consider a simple example of a graph of $k(x)$, with an upper limit of $k\left(x_{0}\right)$ [see diagram], and note that $k(x)$ can't be above
$\frac{1}{320}+\frac{1}{2} k\left(x_{0}\right)$, then we see that this doesn't work if $k\left(x_{0}\right)$ is very large relative to $\frac{1}{320}$, but that it can do if $k\left(x_{0}\right)$ is small enough relative to $\frac{1}{320}$
(in general, a useful device is to consider extreme situations)
So we need to be looking for an upper limit for $k\left(x_{0}\right)$.
From (A), $k(x) \leq \frac{1}{320}+\frac{1}{2} k\left(x_{0}\right)$ whenever $0 \leq x \leq \frac{1}{2}$
In particular, $k\left(x_{0}\right) \leq \frac{1}{320}+\frac{1}{2} k\left(x_{0}\right)$,
so that $\frac{1}{2} k\left(x_{0}\right) \leq \frac{1}{320}$ and $k\left(x_{0}\right) \leq \frac{1}{160}$
Then $k(x) \leq k\left(x_{0}\right) \leq \frac{1}{160}<\frac{1}{100}$,
and $k(x) \leq \frac{1}{100}$, as required.

