2015 MAT Paper - Q2 (2 pages; 24/9/20)
(i) The expression simplifies to $a^{n+1}-b^{n+1}$. This is a standard result, valid for all integer n [viewed as a function of $a, f(a)$ say, $f(b)=b^{n+1}-b^{n+1}=0$ for all n, so that $(a-b)$ is a factor]. But the companion result
$a^{n+1}+b^{n+1}=(a+b)\left(a^{n}-a^{n-1} b+a^{n-2} b^{2}-\cdots-a b^{n-1}+b^{n}\right)$ [note that the signs alternate] is only valid for even n, since (viewed as a function of a) $f(-b)=(-b)^{n+1}+b^{n+1}=0$ (and $(a+b)$ is a factor) only if n is even.
(ii) Suppose that $p=n^{2}-1$, where p is prime.

Then $p=(n-1)(n+1)$. As p is prime, we must have
$n-1=1 \& n+1=p$; ie $n=2 \& p=3$
So there are no other prime numbers with this property.
(iii) Let $p=n^{3}+1=(n+1)\left(n^{2}-n+1\right)$, where p is prime and $n>0$.

As p is prime and $n>0$, we must have
$n+1=p \& n^{2}-n+1=1$
Thus $n(n-1)=0$, so that $n=1$ and $p=2$
ie the only prime number with this property is 2
(iv) The result in (i) can't be applied with $a=3 \& b=2$, as this just gives a factor of $a-b=1$

However, $3^{2015}-2^{2015}$ can be arranged as $\left(3^{403}\right)^{5}-\left(2^{403}\right)^{5}$ [or as $\left(3^{5}\right)^{403}-\left(2^{5}\right)^{403}$, or even as $\left(3^{31}\right)^{13 \times 5}-\left(2^{31}\right)^{13 \times 5}$ etc] so that $3^{403}-2^{403}$ is a factor.

Thus $3^{2015}-2^{2015}$ isn't a prime number.
(v) [It is natural to wonder if one of the previous parts is relevant. The official solution manages to use (i) in its alternative approach.]

By way of exploration, we can consider
$(k+1)^{3}=k^{3}+3 k^{2}+3 k+1>k^{3}+2 k^{2}+2 k+1($ for $k>0)$
and so the solution is very simple: the given expression lies between $k^{3} \&(k+1)^{3}$, and hence there is no positive integer k for which $k^{3}+2 k^{2}+2 k+1$ is a cube.
[Note that there are a couple of errors in the official solution: In the first line it says "Note that $k^{3}<k^{3}+2 k^{2}+2 k^{\prime}$. Presumably "Note that $k^{3}<k^{3}+2 k^{2}+2 k+1$ " was intended.

Then in the 4th line of the alternative approach it says:
"So $n \geq k+1$, so $n^{2}+n k+k^{2} \leq 3 k^{2}+3 k+1$ ", where the \leq should be a \geq
(Incidentally, this is a good example of why it's important to include your working: Had the statement read:
"So $n \geq k+1$, so $n^{2}+n k+k^{2} \leq(k+1)^{2}+(k+1) k+k^{2}=$ $3 k^{2}+3 k+1$ ", then the error would have been much clearer, and
the rest of the argument might have been considered - or the error may have been spotted by the candidate.)]

