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Notes & Solutions for Q1-5 of the Nov. 2015 MAT Paper 

(20 pages; 10/8/20) 

(to be read in conjunction with the official solutions) 

Q1/A - Introduction 

Technically a whole number is an integer, which could be positive, 

negative or zero. However, the mention of a prime number in IV 

suggests that only positive whole numbers are being considered, 

as we don't usually refer to −3 (for example) as a prime number. 

This question is arguably a bit devious. From the official solutions 

it is apparent that you are not expected to establish whether each 

statement is true or false; you only need to deduce which of (a) -

(e) must be the correct answer. 

Solution 

Having established that the final answer takes the form 

4(𝑥 + 1)2 − 3,  we can quickly produce a list of the first few final 

answers (just considering positive 𝑥 for the moment): 

1, 13, 33, 61 

This reveals that II, III & IV are false, so that the only possible 

answer is (e). 

Usually it is a good idea to check the other statements 

independently. 

From the formula 4(𝑥 + 1)2 − 3, statement I is seen to be correct, 

but V is not so quick to deal with (as far as I can see). It can be 

investigated as follows: 

We want to show that  4(𝑥 + 1)2 − 3 is not ≡ 2 𝑚𝑜𝑑 3 

or that  4(𝑥 + 1)2 − 3 ≡ 0 𝑜𝑟 1 𝑚𝑜𝑑 3 
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We could see what happens if we create a difference of two 

squares: 

Result to prove:  4(𝑥 + 1)2 − 4 ≡ 2 𝑜𝑟 0 𝑚𝑜𝑑 3 

LHS  = 4[(𝑥 + 1) + 1][(𝑥 + 1) − 1] = 4𝑥(𝑥 + 2) 

Going through the whole number values of 𝑥, we see that the 

cases where 4𝑥(𝑥 + 2) ≢ 0 𝑚𝑜𝑑 3  are: 

4(2)(4), 4(5)(7), 4(8)(10), …  

ie numbers of the form  4(3𝑛 − 1)(3𝑛 + 1)   for 𝑛 ∈ ℤ+ 

Then  4(3𝑛 − 1)(3𝑛 + 1) = 4(3𝑛)(3𝑛 + 1) − 4(3𝑛 + 1)    

≡ −4(3𝑛 + 1) 𝑚𝑜𝑑 3  [as 4(3𝑛)(3𝑛 + 1) is a multiple of 3] 

≡ −4 [as −4(3𝑛) is a multiple of 3] 

≡ 2 𝑚𝑜𝑑 3, as required 

Answer: (e) 

 

Q1/B - Introduction 

We could do sketches for small values of 𝑛, to get a feel for the 

problem (and possibly rule out some of the answers).  This might 

be time-consuming though. Alternatively, an algebraic approach 

may be possible. 

Solution 

The number of intersections is the number of distinct roots of 

𝑓(𝑥) = 𝑓′(𝑥);  ie (𝑥 + 𝑎)𝑛 − 𝑛(𝑥 + 𝑎)𝑛−1 = 0; 

or  (𝑥 + 𝑎)𝑛−1{(𝑥 + 𝑎) − 𝑛} = 0 

Thus there will always be 2 distinct roots: 𝑥 = −𝑎 & 𝑥 = 𝑛 − 𝑎 (as 

𝑛 ≠ 0). 
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So the answer is (b), as 2 is an even number (another trick 

question!) 

For some reason the official solutions say that the 2nd root will 

occur for a positive 𝑥, but this won't be the case if 𝑎 > 𝑛. 

Answer: (b) 

 

Q1/C - Notes 

The relation  𝑠𝑖𝑛𝑥 = 𝑐𝑜𝑠(
𝜋

2
− 𝑥) can be used for I & III. 

Answer: (c) 

 

Q1/D - Notes 

[For the unusual integral ∫ (𝑥𝑡)2𝑑𝑡
1

0
, we can assume that 𝑥 isn't a 

function of 𝑡; otherwise 𝑓(𝑥) would only be a constant (ie not a 

function of 𝑥). Also, we wouldn't be able to make any progress , if 

we didn't know the form of the function. The integrals can just be 

evaluated in terms of 𝑥.] 

𝑓(𝑥) = ∫ (𝑥𝑡)2𝑑𝑡 = 𝑥2 ∫ 𝑡2𝑑𝑡
1

0
= 𝑥2[

1

3
𝑡3]

1
0

=
1

3
𝑥21

0
  

𝑔(𝑥) = ∫ 𝑡2𝑑𝑡 = [
1

3
𝑡3]

𝑥
0

=
1

3
𝑥3𝑥

0
  

𝑓(𝑔(𝐴)) =
1

3
(

1

3
𝐴3)2 =

1

27
𝐴6  

𝑔(𝑓(𝐴)) =
1

3
(

1

3
𝐴2)3 =

1

81
𝐴6  

Answer: (b) 
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Q1/E - Introduction 

We can make the substitution 𝑢 = 2𝑐𝑜𝑠(2𝑥) + 2, noting the range 

of 𝑢, given the range of 𝑥. 

Solution 

With 𝑢 = 2𝑐𝑜𝑠(2𝑥) + 2, 0 ≤ 𝑥 ≤ 2𝜋 ⇒ 2(−1) + 2 ≤ 𝑢 ≤ 2(1) + 2 

ie 0 ≤ 𝑢 ≤ 4  

[Note: The official solutions consider 𝑠𝑖𝑛𝑥 = 0, with 𝑥 restricted 

to 0 ≤ 𝑥 ≤ 2𝜋, but this isn't correct.] 

Then 𝑠𝑖𝑛𝑢 = 0 ⇒ 𝑢 = 0 𝑜𝑟 𝜋 

⇒ cos(2𝑥) = −1 𝑜𝑟 
𝜋−2

2
=

𝜋

2
− 1  

Now making the substitution 𝑤 = 2𝑥, 0 ≤ 𝑤 ≤ 4𝜋 

Referring to the graph of 𝑐𝑜𝑠𝑤, 

𝑐𝑜𝑠𝑤 = −1 has 2 solutions (for 𝑤), and 𝑐𝑜𝑠𝑤 =
𝜋

2
− 1  has 4 

solutions; making 6 solutions in total. 

As 𝑥 =
𝑤

2
 , there are also 6 solutions for 𝑥. 

[A variation on the above approach is to say that  

2𝑐𝑜𝑠(2𝑥) + 2 must equal 𝑛𝜋, for suitable integer 𝑛  

Then, either 𝑛 = 0, with 𝑐𝑜𝑠(2𝑥) = −1, 

or  𝑛 = 1, with 𝑐𝑜𝑠(2𝑥) =
𝜋

2
− 1   

(no other values of 𝑛 are consistent with 2𝑐𝑜𝑠(2𝑥) + 2), 

as before.] 

Answer: (d) 
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Q1/F - Notes 

There doesn't seem to be a quick way of answering this question 

(the official solutions mention the possibility of  'inspection', but 

this might be wishful thinking). Doing the calculations for each 

possibility, one at a time, is potentially very time-consuming (and 

isn't that quick, even though the answer proves to be (b)). This 

question definitely needs to be left until last (assuming there isn't 

an even more unfriendly one still to come). 

Answer: (b) 

 

Q1/G - Introduction 

The relation 𝑐𝑜𝑠𝜃 = 𝑠𝑖𝑛(
𝜋

2
− 𝜃) can be useful, as an algebraic way 

of dealing with −𝑐𝑜𝑠𝜃 (although referring to the graph of  𝑐𝑜𝑠𝜃 is 

quicker). 

Solution 

𝑐𝑜𝑠2𝑥 = 𝑐𝑜𝑠2𝑦 ⇒ 𝑐𝑜𝑠𝑥 = ±𝑐𝑜𝑠𝑦  

Then 𝑐𝑜𝑠𝑥 = 𝑐𝑜𝑠𝑦 ⇒ 𝑦 = 𝑥 + 2𝑛𝜋  or  𝑦 = (2𝜋 − 𝑥) + 2𝑛𝜋   

ie  𝑦 = 2𝑛𝜋  ±𝑥 

[Alternatively, the two base angles can be taken as 𝑥 & − 𝑥] 

And 𝑐𝑜𝑠𝑥 = −𝑐𝑜𝑠𝑦 ⇒ 𝑐𝑜𝑠𝑦 = −𝑠𝑖𝑛 (
𝜋

2
− 𝑥) = 𝑠𝑖𝑛(𝑥 −

𝜋

2
) 

= 𝑐𝑜𝑠 (
𝜋

2
− (𝑥 −

𝜋

2
)) = 𝑐𝑜𝑠(𝜋 − 𝑥)  

[or just refer to the graph of 𝑐𝑜𝑠𝑥, to see that 

 −𝑐𝑜𝑠𝑥 = 𝑐𝑜𝑠(𝜋 − 𝑥)] 

Thus 𝑦 = 𝜋 − 𝑥 + 2𝑛𝜋 = (2𝑛 + 1)𝜋 − 𝑥, 

or  𝑦 = 2𝜋 − (𝜋 − 𝑥) + 2𝑛𝜋 = (2𝑛 + 1)𝜋 + 𝑥 
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ie  𝑦 = (2𝑛 + 1)𝜋  ± 𝑥 

Thus the possible solutions are: 

𝑦 = 2𝑛𝜋  ±𝑥  and 𝑦 = (2𝑛 + 1)𝜋  ± 𝑥; 

ie straight lines with gradients of ±1, with 𝑦-intercepts of even 

and odd multiples of 𝜋, 

making (c) the correct answer 

Answer: (c) 

 

Q1/H - Introduction 

A standard option is to rearrange an equation or expression into a 

more convenient form. 

Notes 

Rearranging into the form  4 − 5𝑥2 − 6𝑥3 = (𝑥2 + 2)2, we then 

find that there are two distinct roots. 

Answer: (c) 

 

Q1/I - Introduction 

As well as noting the points of intersection of the 3 curves, we can 

also consider their gradients in appropriate regions. 

Notes 

If 𝑓(𝑥) = 𝑥3, 𝑔(𝑥) = 𝑥4 & ℎ(𝑥) = 𝑥5, 

then  𝑓′(𝑥) = 3𝑥2, 𝑔′(𝑥) = 4𝑥3 & ℎ′(𝑥) = 5𝑥4, 

so that, for 𝑥 > 0 for example,  𝑔′(𝑥) > 𝑓′(𝑥) ⇒ 𝑥 >
3

4
 

and ℎ′(𝑥) > 𝑔′(𝑥) ⇒ 𝑥 >
4

5
; 
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ie  𝑔(𝑥) is initially less steep than 𝑓(𝑥), but the curves cross at 𝑥 =

1; and similarly for ℎ(𝑥) & 𝑔(𝑥) 

There are 9 regions in the diagram below. 

 

 

 

 

 

 

 

 

 

 

Answer: (d) 

 

Q1/J - Introduction 

If we want to compare expressions 𝑥 & 𝑦, we can, for example, 

compare 𝑥2 & 𝑦2 instead, or see whether 
𝑥

𝑦
> 1, or 𝑥 − 𝑦 > 0. The 

last option is often easiest.  For awkward expressions such as 
𝑙𝑜𝑔230

𝑙𝑜𝑔385
 , it may well be the case that an approximation will do. It's 

certainly best to leave it until last, when we know which of the 

other expressions it needs to be compared with (hopefully a 

simple one, such as 
5

4
). 
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Notes 

The official solutions for this type of question often give the 

impression that the correct answer is already known. In practice, 

you may need to go down some blind alleys in arriving at the 

solution. 

(a) and (b) are quickest to deal with first: squaring (a), we see 

that 
7

4
>

5

4
 

(e) is probably the next simplest, and we can consider the 

difference of squares: 

7

4
−

(1+2√6+6)

9
=

63−28−8√6

36
>

35−8(3)

36
> 0  

So (a)>(e) 

[We could investigate 
(

7

4
)

(
7+2√6

9
)

=
63(7−2√6)

4(49−24)
=

63(7−2√6)

100
 , but it isn't as 

easy to show that this expression is greater than 1 (and we might 

just end up having to demonstrate an equivalent result of the 

form 𝐴 − 𝐵 > 0)] 

Next, we can consider (𝑐)2 ÷ (𝑎)2 [the expressions lend  

themselves better to showing that 
𝐵

𝐴
> 1] 

Thus 
(

10!

9(6!)2)

(
7

4
)

=
(10)(9)(8)(7)(4)

(9)(6!)(7)
=

(10)(8)

(6)(5)(3)(2)
=

8

18
< 1, so that (a)>(c). 

Finally we need to either compare (d) with (a) directly, or 

perhaps show that it less than (b) [being simpler than (a)]. 

Considering the powers of 2 and 3, we see that 𝑙𝑜𝑔230 is close to 

5, whilst 𝑙𝑜𝑔385 is close to 4. [In general, we can only expect to 

use fairly good approximations to demonstrate inequalities.] 

So 
𝑙𝑜𝑔230

𝑙𝑜𝑔385
<

5

4
 , and (𝑑) < (𝑏). Thus (a) is the largest one. 
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Answer: (a) 

 

Q2 - Sol'n / Notes 

(i) The expression simplifies to 𝑎𝑛+1 − 𝑏𝑛+1 . This is a standard 

result, valid for all integer 𝑛 [viewed as a function of 𝑎 , 𝑓(𝑎) say, 

𝑓(𝑏) = 𝑏𝑛+1 − 𝑏𝑛+1 = 0 for all  𝑛, so that (𝑎 − 𝑏) is a factor]. But 

the companion result  

𝑎𝑛+1 + 𝑏𝑛+1 = (𝑎 + 𝑏)(𝑎𝑛 − 𝑎𝑛−1𝑏 + 𝑎𝑛−2𝑏2 − ⋯ − 𝑎𝑏𝑛−1 + 𝑏𝑛)  

[note that the signs alternate] 

is only valid for even 𝑛, since (viewed as a function of 𝑎) 

𝑓(−𝑏) = (−𝑏)𝑛+1 + 𝑏𝑛+1 = 0 (and (𝑎 + 𝑏) is a factor) only if 𝑛 is 

even.  

 

(ii) Suppose that  𝑝 = 𝑛2 − 1 , where 𝑝 is prime. 

Then 𝑝 = (𝑛 − 1)(𝑛 + 1).  As 𝑝 is prime, we must have  

𝑛 − 1 = 1  &  𝑛 + 1 = 𝑝; ie 𝑛 = 2  &  𝑝 = 3 

So there are no other prime numbers with this property. 

 

(iii) Let 𝑝 = 𝑛3 + 1 = (𝑛 + 1)(𝑛2 − 𝑛 + 1), where 𝑝 is prime and 

𝑛 > 0. 

As 𝑝 is prime and 𝑛 > 0, we must have 

𝑛 + 1 = 𝑝  &  𝑛2 − 𝑛 + 1 = 1  

Thus 𝑛(𝑛 − 1) = 0, so that  𝑛 = 1 and 𝑝 = 2 

ie the only prime number with this property is 2 
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(iv) The result in (i) can't be applied with 𝑎 = 3 & 𝑏 = 2, as this 

just gives a factor of 𝑎 − 𝑏 = 1 

 

However, 32015 − 22015 can be arranged as (3403)5 − (2403)5 

[or as (35)403 − (25)403, or even as (331)13×5 − (231)13×5 etc] 

so that  3403 − 2403 is a factor. 

Thus 32015 − 22015 isn't a prime number. 

 

(v) [It is natural to wonder if one of the previous parts is relevant. 

The official solution manages to use (i) in its alternative 

approach.] 

By way of exploration, we can consider 

(𝑘 + 1)3 = 𝑘3 + 3𝑘2 + 3𝑘 + 1 > 𝑘3 + 2𝑘2 + 2𝑘 + 1  (for 𝑘 > 0) 

and so the solution is very simple: the given expression lies 

between 𝑘3  & (𝑘 + 1)3, and hence there is no positive integer 𝑘 

for which  𝑘3 + 2𝑘2 + 2𝑘 + 1  is a cube. 

[Note that there are a couple of errors in the official solution: In 

the  first line it says "Note that 𝑘3 < 𝑘3 + 2𝑘2 + 2𝑘". Presumably 

"Note that 𝑘3 < 𝑘3 + 2𝑘2 + 2𝑘 + 1" was intended. 

Then in the 4th line of the alternative approach it says: 

"So 𝑛 ≥ 𝑘 + 1, so 𝑛2 + 𝑛𝑘 + 𝑘2 ≤ 3𝑘2 + 3𝑘 + 1", where the ≤ 

should be a ≥ 

(Incidentally, this is a good example of why it's important to 

include your working: Had the statement read: 

"So 𝑛 ≥ 𝑘 + 1, so 𝑛2 + 𝑛𝑘 + 𝑘2 ≤ (𝑘 + 1)2 + (𝑘 + 1)𝑘 + 𝑘2 =

3𝑘2 + 3𝑘 + 1", then the error would have been much clearer, and 
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the rest of the argument might have been considered - or the 

error may have been spotted by the candidate. )] 

Q3 - Sol'n / Notes 

(i) [We can of course look ahead in the question, to see what sort 

of functions might be used.] 

 𝑓(𝑥) = 𝑥, 𝑔(𝑥) = 𝑥 +
1

100
 

 

(ii) |𝑓(𝑥) − 𝑔(𝑥)| =
1

400
𝑠𝑖𝑛(4𝑥2)  when  0 ≤ 𝑥 ≤

1

2
  

(as 4 (
1

2
)

2
= 1 < 𝜋, so that 𝑠𝑖𝑛(4𝑥2) > 0 

and  
1

400
𝑠𝑖𝑛(4𝑥2) ≤

1

400
sin(1) <

1

400
sin (

𝜋

3
) =

1

400
(

√3

2
) 

=
1

320
(

320√3

800
) =

1

320
(

4√3

10
)  

<
1

320
(

4×1.8

10
) =

1

320
(0.72) <

1

320
  

 

(iii) 𝑔(𝑥) = 1 + ∫ 1 + 𝑡 +
𝑡2

2
+

𝑡3

6

𝑥

0
 𝑑𝑡 

= 1 + [𝑡 +
𝑡2

2
+

𝑡3

6
+

𝑡4

24
]

𝑥
0

  

= 1 +  𝑥 +
𝑥2

2
+

𝑥3

6
+

𝑥4

24
  

Then  |𝑓(𝑥) − 𝑔(𝑥)| =
𝑥4

24
≤

1

16(24)
=

1

384
<

1

320
  when  0 ≤ 𝑥 ≤

1

2
 

 

(iv) RHS = 𝑔(𝑥) − 𝑓(𝑥) + ∫ (ℎ(𝑡) − 𝑓(𝑡))𝑑𝑡
𝑥

0
 

= 1 + ∫ 𝑓(𝑡) 𝑑𝑡 − 𝑓(𝑥) + ∫ ℎ(𝑡)𝑑𝑡
𝑥

0
− ∫ 𝑓(𝑡)𝑑𝑡

𝑥

0

𝑥

0
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= 1 + ∫ ℎ(𝑡)𝑑𝑡
𝑥

0
− 𝑓(𝑥) = ℎ(𝑥) − 𝑓(𝑥) = LHS 

 

(v) [This is a stand-alone result; ie not needing to be derived from 

the earlier results.] 

Consider the area under the graph of  ℎ(𝑡) − 𝑓(𝑡), between 0 & 𝑥.  

Assume for the moment that the graph lies above the 𝑡-axis. 

The maximum height of the function is  ℎ(𝑥0) − 𝑓(𝑥0), and the 

area under the graph is no greater than the rectangle with base 𝑥 

and height ℎ(𝑥0) − 𝑓(𝑥0). 

As 𝑥 ≤
1

2
 , the rectangle has area ≤

1

2
(ℎ(𝑥0) − 𝑓(𝑥0)). 

As the integral would have a smaller value if part of the graph 

were to lie below the 𝑡-axis, 

 ∫ (ℎ(𝑡) − 𝑓(𝑡))𝑑𝑡 ≤
1

2
(ℎ(𝑥0) − 𝑓(𝑥0))

𝑥

0
 whenever 0 ≤ 𝑥 ≤

1

2
 

 

(vi) Result to prove: |𝑓(𝑥) − ℎ(𝑥)| ≤
1

100
 for 0 ≤ 𝑥 ≤

1

2
 

or, as we are told that 𝑓(𝑥) ≤ ℎ(𝑥), 

and if we set 𝑘(𝑥) = ℎ(𝑥) − 𝑓(𝑥), 

result to prove is  𝑘(𝑥) ≤
1

100
   

From (iv), using (iii) & (v),  

𝑘(𝑥) ≤
1

320
+

1

2
𝑘(𝑥0)    (A) 

(since, from the working of (iii), 𝑔(𝑥) > 𝑓(𝑥), so that  

𝑔(𝑥) − 𝑓(𝑥) = |𝑔(𝑥) − 𝑓(𝑥)| ≤
1

320
 ) 

Also,  𝑘(𝑥) ≤ 𝑘(𝑥0)     (B) 
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[At first sight, this doesn't look promising, as the inequalities  in 

(A) & (B) seem to be in unfavourable directions: 

𝑘(𝑥) ≤
1

320
+

1

2
𝑘(𝑥0) ⇒ 𝑘(𝑥0) ≥ 2𝑘(𝑥) −

1

160
    , but this can't be 

usefully combined with (B). 

 

 

 

 

 

 

 

 

However, if we consider a simple example of a graph of 𝑘(𝑥), with 

an upper limit of  𝑘(𝑥0) [see diagram], and note that 𝑘(𝑥) can't be 

above 

1

320
+

1

2
𝑘(𝑥0), then we see that this doesn't work if  𝑘(𝑥0) is very 

large relative to 
1

320
, but that it can do if  𝑘(𝑥0) is small enough 

relative to 
1

320
 

(in general, a useful device is to consider extreme situations) 

So we need to be looking for an upper limit for 𝑘(𝑥0). 

From (A),  𝑘(𝑥) ≤
1

320
+

1

2
𝑘(𝑥0)    whenever 0 ≤ 𝑥 ≤

1

2
 

In particular, 𝑘(𝑥0) ≤
1

320
+

1

2
𝑘(𝑥0),     
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so that   
1

2
𝑘(𝑥0) ≤

1

320
    and  𝑘(𝑥0) ≤

1

160
  

Then  𝑘(𝑥) ≤ 𝑘(𝑥0) ≤
1

160
<

1

100
 ,  

and 𝑘(𝑥) ≤
1

100 
 ,  as required. 

 

Q4  Sol'n / Notes 

(i) [A diagram may reveal something that hasn't been 

considered.] 

 

 

 

 

 

 

 

 

 

 

The diagram shows one possible configuration. We note that the 

centre of the circle will lie on the perpendicular bisector of the 

two points; ie the 𝑦-axis, and so 𝑚 = 0.  

The centre could also lie above the Origin, but in either case 

𝑟 = √ℎ2 + 1  
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(ii) The centre of the circle lies on the 𝑦-axis and also on the 

perpendicular bisector of (for example) (1,0) & (𝑥0, 𝑦0). Either 

𝑦0 > 0  or  𝑦0 < 0 , and from the diagram we can see that in each 

case the centre  is uniquely defined as the intersection of these 

lines. The radius is then found from the centre and one of the 3 

points, and so the circle is uniquely determined. 

 

(iii) Referring to the diagram below, we only need to find the 

shaded region of B, 𝐴1 say, as well as the area of A, 𝐴2 say. 
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Then the lopsidedness of circle A is 1 −
𝐴1

𝐴2
 

We note that the centre of circle A lies on the perpendicular 

bisector of the line joining (1,0) & (1,2), as well as being on the 

𝑦-axis; so the centre is (0,1), and the radius is seen to be √2 

Hence 𝐴2 = 2𝜋 

To find 𝐴1, we need to determine the area of the segment of A, 𝐴3 

say, that lies below the 𝑦-axis. Referring to the diagram below,  

𝐴3 =
1

2
𝑟2(𝜃 − 𝑠𝑖𝑛𝜃), where 𝑟 = √2  and 𝜃 is seen to be 

𝜋

2
 

(considering one of the right-angled triangles formed by bisecting 

the angle 𝜃; the sides of which are 1, 1 & √2 ) 

 

 

 

 

 

 

So  𝐴3 =
1

2
(2) (

𝜋

2
− 1) =

𝜋

2
− 1 

and  𝐴1 = half of area of B + 𝐴3  

=
1

2
𝜋(1)2 +

𝜋

2
− 1 = 𝜋 − 1  

Hence the lopsidedness of circle A is 1 −
𝐴1

𝐴2
= 1 −

𝜋−1

2𝜋
 

=
1

2
+

1

2𝜋
  or 

𝜋+1

2𝜋
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(iv) The circumference of circle A will still be outside that of circle 

B, above the 𝑦-axis, as A has to pass through (1, 2𝑝). By symmetry, 

as circle C passes through (−1, −2𝑝), it is the reflection of A in the 

𝑥-axis. See diagram below: regions 1 & 3 are equal. 

 

 

 

 

 

 

 

 

 

 

 

The lopsidedness of B is the ratio of the largest region to the 

whole circle.  

To get a feel for what is going on, we can consider two extreme 

cases: (a) big gap between A and B, and (b) small gap between A 

and B. 

For case (a), region 1 (or 3) is the largest, and to minimise the 

ratio, we want region 1 (and 3) to equal region 2. 

For case (b), region 2 is the largest, and to minimise the ratio, we 

want region 2 to equal region 1 (and 3) - again. 

In other words, in all circumstances, we want the 3 regions to be 

equal. 
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This will be the case when region 2 has area of  
1

3
× area of B; ie 

𝜋

3
 

Similarly to part (ii), the area of region 2  

= 2 ×
1

2
𝑟2(𝜙 − 𝑠𝑖𝑛𝜙) (see diagram below) 

and hence  𝑟2(𝜙 − 𝑠𝑖𝑛𝜙) =
𝜋

3
 

 

 

 

 

 

 

 

 

First of all, 𝑟2 = 𝑝2 + 1 (from the diagram), 

so that  (𝑝2 + 1) (𝜙 − 𝑠𝑖𝑛𝜙) =
𝜋

3
    (*) 

The presence of  
𝜋

6
  in the given result suggests that we should be  

looking at 
𝜙

2
 , and we want  

𝜙

2
= 𝑡𝑎𝑛−1(

1

𝑝
) 

From the diagram,  tan (
𝜙

2
) =

1

𝑝
 , as required. 

Also, 
𝑠𝑖𝑛𝜙

2
=

𝑠𝑖𝑛𝛼

𝑟
=

(𝑝/𝑟)

𝑟
=

𝑝

𝑝2+1
  

Thus  (∗) ⇒ (𝑝2 + 1)𝑡𝑎𝑛−1 (
1

𝑝
) − 𝑝 =

𝜋

6
 , as required. 
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Q5  Sol'n / Notes  

(i)  𝑠 (𝑝(0), 𝑚(0), 𝑚(𝑚(0))) = 𝑠(1, −1, −2) = −2 

𝑠 (𝑝(0), 𝑚(0), 𝑝(𝑝(0))) = 𝑠(1, −1, 2) = 2  

𝑠 (𝑚(0), 𝑝(0), 𝑚(𝑝(0))) = 𝑠(−1, 1, 0) = 1  

Hence the given expression is  𝑠(−2, 2, 1) = 2 as required. 

 

(ii) [It may be worth experimenting with substituting in 5 and 2 

initially, but once an iterative relation becomes apparent, it is 

probably safer to revert to 𝑎 𝑎𝑛𝑑 𝑏.] 

  𝑓(𝑎, 𝑚(𝑏)) = 𝑓(𝑎, 𝑏 − 1)  

𝑝(𝑓(𝑎, 𝑏 − 1)) = 𝑓(𝑎, 𝑏 − 1) + 1  

𝑓(𝑎, 𝑏) = 𝑠(𝑏, 𝑝(𝑎), 𝑓(𝑎, 𝑏 − 1) + 1  )  

= 𝑠(𝑏, 𝑎 + 1, 𝑓(𝑎, 𝑏 − 1) + 1)    

If 𝑏 ≤ 0,  𝑓(𝑎, 𝑏) = 𝑎 + 1   (*) 

If 𝑏 > 0, 𝑓(𝑎, 𝑏) = 𝑓(𝑎, 𝑏 − 1) + 1   (**) 

So  𝑓(5, 2) = 𝑓(5, 1) + 1 

= (𝑓(5, 0) + 1) + 1  

= 𝑓(5, 0) + 2  

= (5 + 1) + 2 = 8  
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(iii) With 𝑏 > 0, 𝑓(𝑎, 𝑏) = 𝑓(𝑎, 𝑏 − 1) + 1, from (**) in (ii). 

As 𝑓(𝑎, 0) = 𝑎 + 1, from (*) in (ii), 

we have an arithmetic sequence where 𝑓(𝑎, 𝑛) = (𝑎 + 1) + 𝑛; 

ie  𝑓(𝑎, 𝑏) = (𝑎 + 1) + 𝑏 = 𝑎 + 𝑏 + 1 

 

(iv) We want 𝑔(𝑎, 𝑏) = 𝑎 + 𝑏  for 𝑏 ≤ 0 

So  𝑔(𝑎, −2) = 𝑎 − 2 

𝑔(𝑎, −1) = 𝑎 − 1  

𝑔(𝑎, 0) = 𝑎  

As we are to use 𝑠(𝑥, 𝑦, 𝑧), we need to have 2 cases: 𝑥 ≤ 0  

and 𝑥 > 0. 

So, with 𝑥 = 𝑏 (perhaps), we would like: 

If 𝑏 ≤ 0, 𝑔(𝑎, 𝑏) = 𝑔(𝑎, 𝑏 + 1) − 1  

This gives  𝑔(𝑎, −2) = 𝑔(𝑎, −1) − 1 

𝑔(𝑎, −1) = 𝑔(𝑎, 0) − 1  

𝑔(𝑎, 0) = 𝑔(𝑎, 1) − 1  

and we want 𝑔(𝑎, 0) = 𝑎, so we need 𝑔(𝑎, 1) = 𝑎 + 1 

For example, if 𝑏 > 0, 𝑔(𝑎, 𝑏) = 𝑎 + 1 will do 

Using 𝑠(𝑥, 𝑦, 𝑧), we can write this as: 

𝑔(𝑎, 𝑏) = 𝑠(𝑏, 𝑔(𝑎, 𝑏 + 1) − 1, 𝑎 + 1)   

or  𝑠(𝑏, 𝑚[𝑔(𝑎, 𝑏 + 1)], 𝑝(𝑎))   

or  𝑠(𝑏, 𝑚[𝑔(𝑎, 𝑝(𝑏))], 𝑝(𝑎))   


