2014 MAT Paper - Q5 (2 pages; 24/9/20)

Solution

(i) $\mathrm{AAA}, \mathrm{AAB}, \mathrm{ABA}, \mathrm{ABB}, \mathrm{ABC}$
(ii) $c_{n, 1}=1$: The letters are all A .
$c_{n, n}=1$: The n letters have to be in alphabetical order.
(iii) Case 1: The final position is different from the others.

There are $c_{n-1, k-1}$ possibilities for the other positions, and just one for the final position (as it has to be a new letter);
ie $c_{n-1, k-1}(1)$ possibilities
Case 2: The final position is the same as one of the others.
There are $c_{n-1, k}$ possibilities for the other positions, and k possibilities for the final position; ie $c_{n-1, k}(k)$ possibilities; giving a total of $c_{n-1, k-1}(1)+c_{n-1, k}(k)=k c_{n-1, k}+c_{n-1, k-1}$

$$
\begin{aligned}
& \text { (iv) } r_{\mathrm{n}}=\sum_{k=1}^{\mathrm{n}} c_{\mathrm{n}, k} \\
& r_{4}=\sum_{k=1}^{4} c_{4, k}=c_{4,1}+c_{4,2}+c_{4,3}+c_{4,4} \\
& =1+\left(2 c_{3,2}+c_{3,1}\right)+\left(3 c_{3,3}+c_{3,2}\right)+1 \\
& =2+c_{3,1}+3 c_{3,2}+3 c_{3,3} \\
& =2+1+3\left(2 c_{2,2}+c_{2,1}\right)+3
\end{aligned}
$$

$=6+3(2+1)$
$=15$
(v) [The official sol'ns gives a quick 'lateral thinking' way of answering this question; not using (iii). The form of words "Give a formula ... Justify your answer" perhaps suggests that (iii) needn't be used.]

From (iii), $c_{n, 2}=2 c_{n-1,2}+c_{n-1,1}$
$=2\left(2 c_{n-2,2}+c_{n-2,1}\right)+1$ for $n>2$
$=4 c_{n-2,2}+2+1$
$=4\left(2 c_{n-3,2}+c_{n-3,1}\right)+2+1($ for $n>3)$
$=8 c_{n-3,2}+4+2+1$
$\ldots=2^{n-2} c_{n-(n-2), 2}+2^{n-3}+\cdots+2+1$ for $n>2$
$=2^{n-2}+\cdots+2+1$
$=\frac{2^{n-1}-1}{2-1}$
$=2^{n-1}-1$
And for $n=2,2^{n-1}-1=1=c_{2,2}$
Thus $c_{n, 2}=2^{n-1}-1$ for all $n \geq 2$

