2014 MAT Paper - Q4 (2 pages; 25/11/20)
(i) Area $=\frac{1}{2} A B \cdot B C \sin (\angle A B C)=\frac{1}{2}(1)(1) \sin (\pi-2 \alpha)$,

As $\triangle A B C$ is isosceles, and so $\angle A C B=\alpha$
So area $=\frac{1}{2} \sin (2 \alpha)$, as required.
(ii) When $\beta=\alpha, D=C$ and $F=1$

When $\beta=\frac{\pi}{2}, D=A$ and $F=0$
And as β increases, F reduces, with F being a continuous function of β.

So there will be a $1-1$ correspondence between the values of β and F, and hence there is a unique value of β such that $F=k$. [The official sol'n considers the situation when $\beta=0$, but this isn't allowed by the assumption that $0<\alpha \leq \beta$.]
(iii) $F=\frac{1}{2}$ when $\angle A X B=\frac{\pi}{2}$,

Then $\angle A B D=\angle A B X=\frac{\pi}{2}-\alpha$,
so that $2 \beta+\left(\frac{\pi}{2}-\alpha\right)=\pi$ (as $\triangle A B D$ is isosceles),
and hence $\beta=\frac{1}{2}\left(\frac{\pi}{2}+\alpha\right)=\frac{\pi}{4}+\frac{\alpha}{2}$
(iv) To find the area of $\triangle A B X$:
$\angle A B X=\angle A B D=\pi-2 \beta$,
so that $\angle A X B=\pi-\alpha-(\pi-2 \beta)=2 \beta-\alpha$
And $\frac{X B}{\sin \alpha}=\frac{A B}{\sin (\angle A X B)}=\frac{1}{\sin (2 \beta-\alpha)}$,
So that $X B=\frac{\sin \alpha}{\sin (2 \beta-\alpha)}$
And area of $\triangle A B X=\frac{1}{2} A B \cdot X B \sin (\angle A B X)$
$=\frac{1}{2}\left(\frac{\sin \alpha}{\sin (2 \beta-\alpha)}\right) \sin (\pi-2 \beta)$
$=\frac{\sin \alpha \sin (2 \beta)}{2 \sin (2 \beta-\alpha)}$
Then $F=\frac{\sin \alpha \sin (2 \beta)}{2 \sin (2 \beta-\alpha)\left[\frac{1}{2} \sin (2 \alpha)\right]}=\frac{\sin (2 \beta) \sin \alpha}{\sin (2 \beta-\alpha) \sin (2 \alpha)]}$, as required.
(v) With $\beta<\alpha$, the diagram appears as before, but with $\alpha \& \beta$ swapped, as well as $C \& D$.

Then the area of $\triangle A B X$ is obtained by swapping $\alpha \& \beta$ in (1) of (iv), to give $\frac{\sin \beta \sin (2 \alpha)}{2 \sin (2 \alpha-\beta)}$

Noting that $\angle C A B$ is still defined to be α, the area of $\triangle A B C$ still equals $\frac{1}{2} \sin (2 \alpha)$,

And so $F=\frac{\sin \beta \sin (2 \alpha)}{2 \sin (2 \alpha-\beta) \cdot \frac{1}{2} \sin (2 \alpha)}=\frac{\sin \beta}{\sin (2 \alpha-\beta)}$

