2014 MAT Paper - Q4 (2 pages; 25/11/20)

(i) Area =
$$\frac{1}{2}AB.BCsin(\angle ABC) = \frac{1}{2}(1)(1)sin(\pi - 2\alpha)$$
,

As $\triangle ABC$ is isosceles, and so $\angle ACB = \alpha$

So area = $\frac{1}{2}sin(2\alpha)$, as required.

(ii) When $\beta = \alpha$, D = C and F = 1

When $\beta = \frac{\pi}{2}$, D = A and F = 0

And as β increases, *F* reduces, with *F* being a continuous function of β .

So there will be a 1 - 1 correspondence between the values of β and F, and hence there is a unique value of β such that F = k.

[The official sol'n considers the situation when $\beta = 0$, but this isn't allowed by the assumption that $0 < \alpha \leq \beta$.]

(iii)
$$F = \frac{1}{2}$$
 when $\angle AXB = \frac{\pi}{2}$,
Then $\angle ABD = \angle ABX = \frac{\pi}{2} - \alpha$,
so that $2\beta + (\frac{\pi}{2} - \alpha) = \pi$ (as $\triangle ABD$ is isosceles),
and hence $\beta = \frac{1}{2}(\frac{\pi}{2} + \alpha) = \frac{\pi}{4} + \frac{\alpha}{2}$

(iv) To find the area of $\triangle ABX$:

$$\angle ABX = \angle ABD = \pi - 2\beta$$
 ,

fmng.uk

so that $\angle AXB = \pi - \alpha - (\pi - 2\beta) = 2\beta - \alpha$

And
$$\frac{XB}{\sin\alpha} = \frac{AB}{\sin(\angle AXB)} = \frac{1}{\sin(2\beta - \alpha)}$$
,

So that $XB = \frac{\sin\alpha}{\sin(2\beta - \alpha)}$

And area of
$$\triangle ABX = \frac{1}{2} AB. XBsin(\angle ABX)$$

$$= \frac{1}{2} \left(\frac{\sin \alpha}{\sin(2\beta - \alpha)} \right) \sin(\pi - 2\beta)$$
$$= \frac{\sin \alpha \sin(2\beta)}{2 \sin(2\beta - \alpha)} \quad (1)$$

Then $F = \frac{\sin\alpha\sin(2\beta)}{2\sin(2\beta-\alpha)[\frac{1}{2}\sin(2\alpha)]} = \frac{\sin(2\beta)\sin\alpha}{\sin(2\beta-\alpha)\sin(2\alpha)]}$, as required.

(v) With $\beta < \alpha$, the diagram appears as before, but with $\alpha \& \beta$ swapped, as well as *C* & *D*.

Then the area of $\triangle ABX$ is obtained by swapping $\alpha \& \beta$ in (1) of (iv), to give $\frac{\sin\beta \sin(2\alpha)}{2\sin(2\alpha-\beta)}$

Noting that $\angle CAB$ is still defined to be α , the area of $\triangle ABC$ still equals $\frac{1}{2}sin(2\alpha)$,

And so $F = \frac{\sin\beta \sin(2\alpha)}{2\sin(2\alpha-\beta)\cdot\frac{1}{2}\sin(2\alpha)} = \frac{\sin\beta}{\sin(2\alpha-\beta)}$