2014 MAT Paper - Q3 (2 pages; 25/11/20)
(i) From (A), $f(x+0)=f(x) f(0)$,

So that $f(0)=\frac{f(x)}{f(x)}($ as $f(x) \neq 0)$, and thus $f(0)=1$, as required.
(ii) As $f^{\prime}(x)=f(x), \int f(x) d x=f(x)+c$,
so that $I=[f(x)]_{0}^{1}=f(1)-f(0)=a-1$, as required.
(iii) ['steps' may be a typo, as 'strips' is more common]

$$
I_{n}=\frac{1}{2}\left(\frac{1}{n}\right)\left(f(0)+f(1)+2\left[f\left(\frac{1}{n}\right)+f\left(\frac{2}{n}\right)+\cdots+f\left(\frac{n-1}{n}\right)\right]\right)
$$

Then, as $f(x+y)=f(x) f(y)$,
$f\left(\frac{2}{n}\right)=f\left(\frac{1}{n}+\frac{1}{n}\right)=f\left(\frac{1}{n}\right) f\left(\frac{1}{n}\right)=\left[f\left(\frac{1}{n}\right)\right]^{2}$,
And $f\left(\frac{3}{n}\right)=f\left(\frac{2}{n}+\frac{1}{n}\right)=f\left(\frac{2}{n}\right) f\left(\frac{1}{n}\right)=\left[f\left(\frac{1}{n}\right)\right]^{3}$ and so on.
Then, with $b=f\left(\frac{1}{n}\right), I_{n}=\frac{1}{2 n}\left(1+a+2\left[b+b^{2}+\cdots+b^{n-1}\right]\right)$
$=\frac{1}{2 n}\left[1+a+\frac{2 b\left(b^{n-1}-1\right)}{b-1}\right]$
And $b^{n}=f\left(\frac{n}{n}\right)=a$,
So that $I_{n}=\frac{1}{2 n}\left(\frac{1}{b-1}\right)[(1+a)(b-1)+2 a-2 b]$
$=\frac{1}{2 n}\left(\frac{1}{b-1}\right)[b-1+a b-a+2 a-2 b]$
$=\frac{1}{2 n}\left(\frac{1}{b-1}\right)[-b-1+a b+a]$
$=\frac{1}{2 n}\left(\frac{1}{b-1}\right)(b+1)(-1+a)$
$=\frac{1}{2 n}\left(\frac{b+1}{b-1}\right)(a-1)$, as required .
(iv) rtp [result to prove]: $a \leq\left(1+\frac{2}{2 n-1}\right)^{n}$

Equivalently, $b=a^{\frac{1}{n}} \leq 1+\frac{2}{2 n-1}\left({ }^{*}\right)$
Now, $I_{n} \geq I \Rightarrow \frac{1}{2 n}\left(\frac{b+1}{b-1}\right)(a-1) \geq a-1$,
So that $\frac{1}{2 n}\left(\frac{b+1}{b-1}\right) \geq 1$
$\Leftrightarrow b+1 \geq 2 n(b-1)$
$\Leftrightarrow b(1-2 n) \geq-2 n-1$
$\Leftrightarrow b \leq \frac{-(2 n+1)}{1-2 n}=\frac{2 n+1}{2 n-1}$, as $1-2 n<0$
$\Leftrightarrow b \leq 1+\frac{2}{2 n-1}$, which is (*)

