2014 MAT Paper - Q2 (2 pages; 18/10/20)

Solution

(i) If x = 1 is a sol'n of the cubic, then $1 + 2b - a^2 - b^2 = 0$,

so that $b^2 - 2b - 1 = -a^2 \le 0$ (A)

The graph of $y = f(b) = b^2 - 2b - 1$ crosses the *b*-axis when

$$b = rac{2\pm\sqrt{4+4}}{2} = 1\pm\sqrt{2}$$
 ,

so that (A) $\Rightarrow 1 - \sqrt{2} \le b \le 1 + \sqrt{2}$,

as y = f(b) is a u-shaped quadratic.

(ii) Let
$$g(x) = x^3 + 2bx^2 - a^2x - b^2$$

For x = 1 to be a repeated root, there must be a turning point at x = 1.

 $g'(x) = 3x^2 + 4bx - a^2$ Then $g'(1) = 0 \Rightarrow 3 + 4b - a^2 = 0$ Also, $b^2 - 2b - 1 = -a^2$, from (A), so that $3 + 4b = -(b^2 - 2b - 1)$, and hence $b^2 + 2b + 2 = 0$ (B) But $b^2 + 2b + 2 = (b + 1)^2 + 1 > 0$, so that there are no sol'ns to (B).

(iii) 1st part

Suppose that $x^3 + 2bx^2 - a^2x - b^2 = (x - c)^2(x - 1)$. = $(x^2 - 2cx + c^2)(x - 1)$ Equating coeffs of $x^2: 2b = -1 - 2c$

Equating constant terms: $-b^2 = -c^2$

Hence $c = \pm b$, and $2b = -1 \mp 2b$.

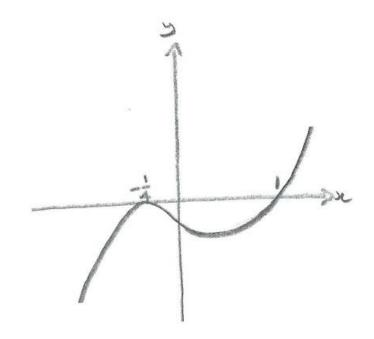
When c = b, 2b = -1 - 2b, so that 4b = -1 and $b = -\frac{1}{4}$

When c = -b, 2b = -1 + 2b, and there is no sol'n.

2nd part

As
$$c = b$$
, $g(x) = \left(x + \frac{1}{4}\right)^2 (x - 1)$.

From the shape of the cubic (see diagram below), it has a maximum at its repeated root.



[Strictly speaking, we need to check that a solution exists for a: Equating coeffs of x in the 1st part gives

 $-a^2 = c^2 + 2c = \frac{1}{16} - \frac{1}{2} < 0$, so that a solution does exist for a.]