2014 MAT Paper - Q2 (2 pages; 18/10/20)

Solution

(i) If $x=1$ is a sol'n of the cubic, then $1+2 b-a^{2}-b^{2}=0$, so that $b^{2}-2 b-1=-a^{2} \leq 0$ (A)

The graph of $y=f(b)=b^{2}-2 b-1$ crosses the b-axis when $b=\frac{2 \pm \sqrt{4+4}}{2}=1 \pm \sqrt{2}$,
so that $(A) \Rightarrow 1-\sqrt{2} \leq b \leq 1+\sqrt{2}$,
as $y=f(b)$ is a u-shaped quadratic.
(ii) Let $g(x)=x^{3}+2 b x^{2}-a^{2} x-b^{2}$

For $x=1$ to be a repeated root, there must be a turning point at $x=1$.
$g^{\prime}(x)=3 x^{2}+4 b x-a^{2}$
Then $g^{\prime}(1)=0 \Rightarrow 3+4 b-a^{2}=0$
Also, $b^{2}-2 b-1=-a^{2}$, from (A), so that
$3+4 b=-\left(b^{2}-2 b-1\right)$,
and hence $b^{2}+2 b+2=0$ (B)
But $b^{2}+2 b+2=(b+1)^{2}+1>0$,
so that there are no sol'ns to (B).

(iii) 1st part

Suppose that $x^{3}+2 b x^{2}-a^{2} x-b^{2}=(x-c)^{2}(x-1)$.
$=\left(x^{2}-2 c x+c^{2}\right)(x-1)$

Equating coeffs of $x^{2}: 2 b=-1-2 c$
Equating constant terms: $-b^{2}=-c^{2}$
Hence $c= \pm b$, and $2 b=-1 \mp 2 b$.
When $c=b, 2 b=-1-2 b$, so that $4 b=-1$ and $b=-\frac{1}{4}$
When $c=-b, 2 b=-1+2 b$, and there is no sol'n.

2nd part

As $c=b, g(x)=\left(x+\frac{1}{4}\right)^{2}(x-1)$.
From the shape of the cubic (see diagram below), it has a maximum at its repeated root.

[Strictly speaking, we need to check that a solution exists for a :
Equating coeffs of x in the 1st part gives
$-a^{2}=c^{2}+2 c=\frac{1}{16}-\frac{1}{2}<0$, so that a solution does exist for a.]

