2014 MAT Paper - Multiple Choice (10 pages; 28/10/20)

Q1/A

Solution

Writing $y=x^{2}, x^{4}<8 x^{2}+9 \Leftrightarrow y^{2}-8 y-9<0$
ie $(y-9)(y+1)<0 \Leftrightarrow-1<y<9$
(as $y^{2}-8 y-9$ is a u-shaped quadratic)
$\Leftrightarrow-3<x<3$
ie the answer is (a)

Q1/B

[Completing the square is something that is quick to do (and may shed some light on the problem).]

Let $f(x)=\log _{10}\left(x^{2}-2 x+2\right)=\log _{10}\left[(x-1)^{2}+1\right]$
Then $f(1)=0$, so that (a), (b), (c) \& (d) can be eliminated.
Thus the answer is (e).

Q1/C

Solution

$$
\begin{aligned}
& y=k x^{3}-(k+1) x^{2}+(2-k) x-k \\
& \Rightarrow \frac{d y}{d x}=3 k x^{2}-2(k+1) x+2-k \\
& \Rightarrow \frac{d^{2} y}{d x^{2}}=6 k x-2(k+1)
\end{aligned}
$$

In order for there to be a turning point that is a minimum,
$\frac{d y}{d x}=0$ and $\frac{d^{2} y}{d x^{2}}>0$, when $x=1$
[This is true for a cubic, but not a general function, as $\frac{d^{2} y}{d x^{2}}>0$ is not a necessary condition for a minimum (consider $y=x^{4}$, for example, when $\frac{d^{2} y}{d x^{2}}=0$ at the minimum).]
so that $3 k-2(k+1)+2-k=0$, which is true for any k, and $6 k-2(k+1)>0$; ie $4 k>2$, or $k>\frac{1}{2}$

So (c) is the answer.

Q1/D

Method 1

From the diagram above, the x-coordinate of the reflected point is $1(\cos (2 \theta))=\cos ^{2} \theta-\sin ^{2} \theta=2 \cos ^{2} \theta-1=\frac{2}{\sec ^{2} \theta}-1$
$=\frac{2}{1+\tan ^{2} \theta}-1=\frac{2}{1+m^{2}}-1=\frac{2-\left(1+m^{2}\right)}{1+m^{2}}=\frac{1-m^{2}}{1+m^{2}}$,
which shows that (d) is the correct answer.

Also, y-coordinate is $1(\sin (2 \theta))=2 \sin \theta \cos \theta$ $\tan \theta=\frac{m}{1} \Rightarrow \sin \theta=\frac{m}{\sqrt{1+m^{2}}}$ and $\cos \theta=\frac{1}{\sqrt{1+m^{2}}}$ (by Pythagoras) so that $2 \sin \theta \cos \theta=\frac{2 m}{1+m^{2}}$, as required.

Method 2

From the diagram above, triangle $0 Q R$ gives $\sin \theta=\frac{d}{1}$ and triangle PRS gives $\frac{b}{2 d}=\cos \theta$

Then $b=2 \sin \theta \cos \theta$
Also $c^{2}=(2 d)^{2}-b^{2}=(2 \sin \theta)^{2}-4 \sin ^{2} \theta \cos ^{2} \theta$
$=4 \sin ^{2} \theta\left(1-\cos ^{2} \theta\right)=4 \sin ^{4} \theta$
so that $c=2 \sin ^{2} \theta$
and $a=1-c=1-2 \sin ^{2} \theta=1-2\left(1-\cos ^{2} \theta\right)=2 \cos ^{2} \theta-1$
(2)

Then from (1) \& (2) we can proceed as in the previous method.

Method 3 (outside the MAT syllabus)

The reflection of the general point $P(a, b)$ in the line $y=m x$ can be obtained by the following vector method:

Referring to the diagram, let $\lambda\binom{1}{m}$ be the point Q .
Then, as $\overrightarrow{Q P}$ is perpendicular to the line $y=m x$,
$\overrightarrow{Q P} \cdot\binom{1}{m}=0$; ie $\binom{a-\lambda}{b-\lambda m} \cdot\binom{1}{m}=0$,
so that $a-\lambda+(b-\lambda m) m=0$
$\Rightarrow \lambda\left(m^{2}+1\right)=a+b m$, and $\lambda=\frac{a+b m}{m^{2}+1}$
Then $\overrightarrow{O R}=\overrightarrow{O Q}+\overrightarrow{Q R}=\lambda\binom{1}{m}+\overrightarrow{P Q}$
$=\lambda\binom{1}{m}+\binom{\lambda-a}{\lambda m-b}$
$=\binom{2 \lambda-a}{2 \lambda m-b}$

$$
\begin{aligned}
& =\frac{1}{m^{2}+1}\binom{2(a+b m)-a\left(m^{2}+1\right)}{2 m(a+b m)-b\left(m^{2}+1\right)} \\
& =\frac{1}{m^{2}+1}\binom{a\left(1-m^{2}\right)+2 b m}{2 a m+b\left(m^{2}-1\right)}
\end{aligned}
$$

[Note that, when $m=1, \mathrm{R}$ is (b, a).]
Then, when $a=1 \& b=0, \mathrm{R}$ is $\frac{1}{m^{2}+1}\binom{1-m^{2}}{2 m}$
So the answer is (d).

Q1/E

$$
\begin{align*}
& \left(4 \sin ^{2} x+4 \cos x+1\right)^{2}=\left(4\left(1-\cos ^{2} x\right)+4 \cos x+1\right)^{2} \\
& =\left(5+4 \cos x-4 \cos ^{2} x\right)^{2} \\
& =\left(-4\left(\cos ^{2} x-\cos x\right)+5\right)^{2} \\
& =\left(-4\left(\cos x-\frac{1}{2}\right)^{2}+6\right)^{2} \\
& =\left(6-(2 \cos x-1)^{2}\right)^{2} \quad \text { (A) } \tag{A}
\end{align*}
$$

Now, $(2 \cos x-1)^{2}$ varies from 0 to 9
When it equals 0 , (A) has its maximum value of 36 .
So the answer is (b).

Introduction

This problem can be investigated either algebraically, or graphically. In fact a combination of the two approaches is probably the quickest way of arriving at the answer.

Solution

From an algebraic point of view, any combination of the functions S and T will produce a function of the form $a \pm x$ (where a is an integer), so that t has to be odd, in order to give the $-x$ in

$$
F(x)=8-x
$$

From a graphical point of view, if x represents the initial position on the x-axis, with T having the effect of a reflection in the line $x=0$, and S that of a translation of one place to the right, then $F(x)$ can be considered to represent the final position.

If x is odd/even, $8-x$ will be odd/even as well, and there will be an even difference between the final and initial positions in both cases, so that s must be even, as any reflections about $x=0$ have no effect on the odd/even status.

Thus t is odd and s is even, so that the answer is (c).

Q1/G

Solution

$$
\begin{aligned}
& \left([1+x y]+y^{2}\right)^{n}=(1+x y)^{n}+n(1+x y)^{n-1} y^{2} \\
& +\binom{n}{2}(1+x y)^{n-2} y^{4}+\cdots
\end{aligned}
$$

Only the term $n(1+x y)^{n-1} y^{2}$ will contain a power of y that is 2 greater than the power of x, and we require the term
$n\binom{n-1}{3}(x y)^{3} y^{2}$ within this, so that the required coefficient is
$n\binom{n-1}{3}=\frac{n(n-1)!}{3!(n-4)!}$
$=\frac{n!(4!)}{3!(n-4)!(4!)}=4\binom{n}{4}$
so that the answer is (d).
Alternatively, knowledge of the trinomial expansion:
$(a+b+c)^{n}=\sum_{\substack{i, j, k \\(i+j+k=n)}}\binom{n}{i, j, k} a^{i} b^{j} c^{k}$,
where $\binom{n}{i, j, k}=\frac{n!}{i!j!k!}$, gives the answer straightaway,
as we require the term $\binom{n}{n-4,3,1}(1)^{n-4}(x y)^{3}\left(y^{2}\right)^{1}$,
so that the coefficient is

$$
\binom{n}{n-4,3,1}=\frac{n!}{(n-4)!(3!)(1!)}=\frac{n!(4!)}{(n-4)!(3!)(4!)}=4\binom{n}{4}
$$

Q1/H

To find out how much has been added to $F(1)$ by the time $F(6000)$ has been reached:

Of the numbers 2-6000,
3000 are even
2000 are multiples of 3 , and 1000 of these are multiples of 2
$[6000,5994, \ldots, 6$, with $6000=6+999 \times 6]$
The numbers in the required categories are:

2 divides n but 3 does not divide $n(3000-1000=2000)$
3 divides n but 2 does not divide n (1000)
2 and 3 both divide n (1000)
So $F(6000)=2000(2)+1000(3)+1000(4)=11000$
so that the answer is (c).

Q1/I

Introduction

At each stage of a composite transformation, we must always be doing one of the following:
(a) replacing x with $x+a$ (where a can be negative), to give a translation of $\binom{-a}{0}$
(b) replacing x with $k x$ (where k can be negative; eg $k=-1$ represents a reflection in the y-axis), to give a stretch of factor $1 / k$ in the x-direction (ie the graph is seen to compress if $k>1$)
(c) replacing y with $y+a$ (or, equivalently, subtracting a from the function, so that $y=f(x) \rightarrow y=f(x)-a)$,), to give a translation of $\binom{0}{-a}$
(d) replacing y with $k y$ (or , equivalently, dividing the function by k, so that $\left.y=f(x) \rightarrow y=\frac{1}{k} f(x)\right)$, to give a stretch of factor $1 / k$ in the y-direction

Solution

$x^{2}-4 x+3=(x-2)^{2}-1$
$y=2^{x^{2}} \rightarrow y=2^{(x-2)^{2}}$ is a translation of $\binom{2}{0}$
and $y=2^{(x-2)^{2}} \rightarrow y=2^{(x-2)^{2}-1}$ or $y=\frac{1}{2} 2^{(x-2)^{2}}$ is a stretch of scale factor 2 in the y direction

So the answer is (b).

Q1/J

Solution

[In the official solution, $\int_{-1}^{1} f(x) d u$ should read $\int_{-1}^{1} f(x) d x$ (or $\left.\int_{-1}^{1} f(u) d u\right)$ etc $]$
$\int_{-1}^{1} f(t) d t$ and $\int_{-1}^{1} f(x) d x$ can both be written as a constant, A say.

A possible line of investigation could be substituting in particular values of $x(\operatorname{eg} x=-1 \& 1)$, or (more generally) $x=a$:

This yields $6+f(a)=2 f(-a)+3 a^{2} A$ and
$6+f(-a)=2 f(a)+3 a^{2} A$
Subtracting one from the other then gives $f(a)=f(-a)$.
As this is true for all a, we can say that $f(x)=f(-x)$.
Then, integrating both sides of the original equation from -1 to 1 :

$$
\begin{aligned}
& \int_{-1}^{1} 6 d x+\int_{-1}^{1} f(x) d x=2 \int_{-1}^{1} f(x) d x+3 A \int_{-1}^{1} x^{2} d x \\
& \Rightarrow[6 x]_{-1}^{1}+A=2 A+3 A\left[\frac{1}{3} x^{3}\right]_{-1}^{1} \\
& \Rightarrow(6-(-6))=A+A(1-(-1)) \\
& \Rightarrow 12=3 A \\
& \Rightarrow A=4
\end{aligned}
$$

So the answer is (a).
[The official solution points out that $\int_{-1}^{1} f(-x) d x=\int_{-1}^{1} f(x) d x$, which shortens the method.]

