2013 MAT Paper - Q5 (2 pages; 26/9/20)

Introduction

This question is a good illustration of the dilemmas to be faced for this style of question: (i) when to start listing possible combinations, and (ii) when to try to use an earlier result.

The idea of conditioning is very important.

Solution

(i) The numbers are: $8,17,26,35,44,53,62,71,80$
so that there are 9 such numbers.
(ii) If $n=9$ (for example), then the numbers are $9,27, \ldots, 90$, giving 10 numbers.

If $n=1$, then we just have $1 \& 10$.
In general, we see that there will be $n+1$ numbers.
(iii) Conditioning on the hundreds digit (or the units) enables the result from (ii) to be used:

If the hundreds digit is 0 , then the remaining digits must sum to n, and so there will be $n+1$ suitable numbers, from (i).

If the hundreds digit is 1 , then the remaining digits must sum to $n-1$, and so there will be $(n-1)+1$ suitable numbers.

And so on, until the hundreds digit is $n-1$, when the remaining digits must sum to 1 , and so there will be $1+1$ suitable numbers.

Finally, if the hundreds digit is n, then the remaining digits must be zeros, so that there is 1 suitable number.

In total there are $(n+1)+n+\cdots+1=\frac{1}{2}(n+1)(n+2)$ numbers.
(iv) We can apply the same method, but with $n=8$, and allowing the hundreds digit to range from 5 to 9 :

If the hundreds digit is 5 , then the remaining digits must sum to 3 , and so there will be $3+1$ suitable numbers.

And so on, until the hundreds digit is 7 , when the remaining digits must sum to 1 , and so there will be $1+1$ suitable numbers.

Finally, if the hundreds digit is 8 then the remaining digits must be zeros, so that there is 1 suitable number.

This gives a total of $4+3+2+1=10$ numbers.
(v) [Note that there can be no more than one digit of at least 5 (otherwise the wording is ambiguous: does "one digit" mean "exactly one" or "at least one"?)]

Suppose that the hundreds digit is at least 5 . Then, from (iv), there are 10 suitable numbers.

By symmetry, there are also 10 suitable numbers, where the tens digit is at least 5 , and a further 10 where the units digit is at least 5. This gives an overall total of 30 .
(vi) [Note that we cannot simply add the result from (iii) for the different values of n, as n would have to range beyond 9 (and $n<$ 10 for (iii).]

As there are 1000 numbers, there are 3×1000 digits overall (writing eg 20 as 020).

By symmetry, each of the digits 0 to 9 occurs the same number of times. So each one occurs $\frac{3000}{10}=300$ times.

Then the required sum is $300(0+1+2+\cdots+9)$
$=300\left(\frac{1}{2}\right)(9)(10)=13500$

