2013 MAT Paper - Q4 (3 pages; 27/11/20)
(i) First of all, without any restriction on x :

When $x=0, y=1$ and when $y=0, x=-a$.
There is a vertical asymptote at $x=a$, and the behaviour of the graph of $y=\frac{a+x}{a-x}$ as x approaches a can be investigated by setting $x=a-\delta$, where δ is a small positive number. This shows that $y \rightarrow \infty$ as $x \rightarrow a^{-}$[ie x tends to a from below]. And $x=a+\delta$ shows that $y \rightarrow-\infty$ as $x \rightarrow a^{+}$.

As $x \rightarrow \pm \infty, y \rightarrow-1$

Then, with $-a<x<a$:

(ii) We can draw in radii as shown below, and discover that the area between the two (identical) triangles is a quarter of the circle.

So the area of A is $2\left(\frac{1}{2}\right) \cos \theta \sin \theta+\frac{1}{4} \pi(1)^{2}$
$=\cos \theta \sin \theta+\frac{\pi}{4}\left[\right.$ or $\left.\frac{1}{2} \sin 2 \theta+\frac{\pi}{4}\right]$
(iii) $(\sin \theta-\cos \theta)^{2} \geq 0 \Rightarrow \sin ^{2} \theta+\cos ^{2} \theta-2 \sin \theta \cos \theta \geq 0$
$\Rightarrow 1 \geq 2 \sin \theta \cos \theta \Rightarrow \sin \theta \cos \theta \leq \frac{1}{2}$
(iv) $\frac{\text { area of } A}{\text { area of } B}=\frac{\cos \theta \sin \theta+\frac{\pi}{4}}{\frac{1}{2} \pi(1)^{2}-\left(\cos \theta \sin \theta+\frac{\pi}{4}\right)}=\frac{\cos \theta \sin \theta+\frac{\pi}{4}}{\frac{\pi}{4}-\cos \theta \sin \theta}$

And $\sin \theta \cos \theta \leq \frac{1}{2} \Rightarrow \frac{\pi}{4}-\cos \theta \sin \theta \geq \frac{\pi}{4}-\frac{1}{2}$
$\Rightarrow \frac{\cos \theta \sin \theta+\frac{\pi}{4}}{\frac{\pi}{4}-\cos \theta \sin \theta} \leq \frac{\frac{1}{2}+\frac{\pi}{4}}{\frac{\pi}{4}-\frac{1}{2}}=\frac{2+\pi}{\pi-2} \quad$ or $\frac{\pi+2}{\pi-2}$
And when $\theta=\frac{\pi}{4}, \sin \theta \cos \theta=\frac{1}{\sqrt{2}} \cdot \frac{1}{\sqrt{2}}=\frac{1}{2}$,
So that when $\theta=\frac{\pi}{4}, \frac{\text { area of } A}{\text { area of } B}=\frac{\frac{1}{2}+\frac{\pi}{4}}{\frac{\pi}{4}-\frac{1}{2}}=\frac{2+\pi}{\pi-2}$
ie the ratio $\frac{\text { area of } A}{\text { area of } B}$ has $\frac{2+\pi}{\pi-2}$ as its largest value.

