2013 MAT Paper - Q4 (3 pages; 27/11/20)

(i) First of all, without any restriction on *x*:

When x = 0, y = 1 and when y = 0, x = -a.

There is a vertical asymptote at x = a, and the behaviour of the graph of $y = \frac{a+x}{a-x}$ as x approaches a can be investigated by setting $x = a - \delta$, where δ is a small positive number. This shows that $y \to \infty$ as $x \to a^-$ [ie x tends to a from below]. And $x = a + \delta$ shows that $y \to -\infty$ as $x \to a^+$.

Then, with -a < x < a:

(ii) We can draw in radii as shown below, and discover that the area between the two (identical) triangles is a quarter of the circle.

So the area of *A* is $2\left(\frac{1}{2}\right)cos\theta sin\theta + \frac{1}{4}\pi(1)^2$ = $cos\theta sin\theta + \frac{\pi}{4} \left[or\frac{1}{2}sin2\theta + \frac{\pi}{4}\right]$

(iii) $(\sin\theta - \cos\theta)^2 \ge 0 \Rightarrow \sin^2\theta + \cos^2\theta - 2\sin\theta\cos\theta \ge 0$ $\Rightarrow 1 \ge 2\sin\theta\cos\theta \Rightarrow \sin\theta\cos\theta \le \frac{1}{2}$

fmng.uk

(iv)
$$\frac{\operatorname{area of } A}{\operatorname{area of } B} = \frac{\cos\theta\sin\theta + \frac{\pi}{4}}{\frac{1}{2}\pi(1)^2 - \left(\cos\theta\sin\theta + \frac{\pi}{4}\right)} = \frac{\cos\theta\sin\theta + \frac{\pi}{4}}{\frac{\pi}{4} - \cos\theta\sin\theta}$$

And $sin\theta cos\theta \leq \frac{1}{2} \Rightarrow \frac{\pi}{4} - cos\theta sin\theta \geq \frac{\pi}{4} - \frac{1}{2}$

$$\Rightarrow \frac{\cos\theta\sin\theta + \frac{\pi}{4}}{\frac{\pi}{4} - \cos\theta\sin\theta} \le \frac{\frac{1}{2} + \frac{\pi}{4}}{\frac{\pi}{4} - \frac{1}{2}} = \frac{2 + \pi}{\pi - 2} \quad \text{or} \ \frac{\pi + 2}{\pi - 2}$$

And when
$$\theta = \frac{\pi}{4}$$
, $\sin\theta\cos\theta = \frac{1}{\sqrt{2}} \cdot \frac{1}{\sqrt{2}} = \frac{1}{2}$

So that when
$$\theta = \frac{\pi}{4}$$
, $\frac{area \ of \ A}{area \ of \ B} = \frac{\frac{1}{2} + \frac{\pi}{4}}{\frac{\pi}{4} - \frac{1}{2}} = \frac{2 + \pi}{\pi - 2}$

ie the ratio $\frac{area \ of \ A}{area \ of \ B}$ has $\frac{2+\pi}{\pi-2}$ as its largest value.