fmng.uk

2013 MAT Paper - Q3 (3 pages; 26/11/20)

(i)
$$A(k) = \int_0^k x(x-k)(x-2)dx - \int_k^2 x(x-k)(x-2)dx$$

(ii) x(x - k)(x - 2) is a cubic function in x which integrates to give a quartic in x, and when k is substituted for x in the limits, a quartic in k results (noting that the k in x(x - k)(x - 2) doesn't affect the cubic term in x, and will therefore only give rise to a cubic in k after integration). The sum of two such integrals will not involve any powers of k higher than k^4 .

(iii)
$$f_k(1+t) + f_{2-k}(1-t)$$

= $(1+t)(1+t-k)(1+t-2)$
+ $(1-t)(1-t-[2-k])(1-t-2)$
= $(1+t)(1+t-k)(t-1) + (1-t)(-1-t+k)(-1-t)$
= $(1+t)(1+t-k)(t-1) + (1-t)(1+t-k)(1+t) = 0$,
So that $f_k(1+t) = -f_{2-k}(1-t)$, as required.

(iv) From (iii),
$$f_{2-k}(x) = -f_k(1+t)$$
, where $x = 1 - t$, so that
 $t = 1 - x$ and $1 + t = 2 - x$
Thus $f_{2-k}(x) = -f_k(2 - x)$

Replacing x with 2 - x gives a reflection in x = 1, and so the required transformation is a reflection in x = 1, together with a reflection in the x-axis (see diagrams).

A(2 - k) is the area shaded in the diagram for $y = f_{2-k}(x)$, and this is the same as the shaded area for $y = f_k(x)$; ie A(k).

[Line 3 of part (iv) of the official solution should read "*x*-axis" instead of "*y*-axis".]

(v)
$$A(k) = A(2 - k) \Rightarrow y = A(x)$$
 is symmetric about $x = 1$
 $(A(1 - t) = A(2 - [1 - t]) = A(1 + t))$

ie if A(k) is translated by 1 to the left, an even function is produced

An even function, which is also a polynomial of degree 4 or less, will be of the form $y = ax^4 + bx^2 + c$,

And y = A(x) will be obtained by translating this function by 1 to the right, giving $y = a(x - 1)^4 + b(x - 1)^2 + c$,

So that $A(k) = a(k-1)^4 + b(k-1)^2 + c$, as required.