2013 MAT Paper - Q3 (3 pages; 26/11/20)
(i) $A(k)=\int_{0}^{k} x(x-k)(x-2) d x-\int_{k}^{2} x(x-k)(x-2) d x$
(ii) $x(x-k)(x-2)$ is a cubic function in x which integrates to give a quartic in x, and when k is substituted for x in the limits, a quartic in k results (noting that the k in $x(x-k)(x-2)$ doesn't affect the cubic term in x, and will therefore only give rise to a cubic in k after integration). The sum of two such integrals will not involve any powers of k higher than k^{4}.
(iii) $f_{k}(1+t)+f_{2-k}(1-t)$
$=(1+t)(1+t-k)(1+t-2)$
$+(1-t)(1-t-[2-k])(1-t-2)$
$=(1+t)(1+t-k)(t-1)+(1-t)(-1-t+k)(-1-t)$
$=(1+t)(1+t-k)(t-1)+(1-t)(1+t-k)(1+t)=0$,
So that $f_{k}(1+t)=-f_{2-k}(1-t)$, as required.
(iv) From (iii), $f_{2-k}(x)=-f_{k}(1+t)$, where $x=1-t$, so that
$t=1-x$ and $1+t=2-x$
Thus $f_{2-k}(x)=-f_{k}(2-x)$
Replacing x with $2-x$ gives a reflection in $x=1$, and so the required transformation is a reflection in $x=1$, together with a reflection in the x-axis (see diagrams).

$A(2-k)$ is the area shaded in the diagram for $y=f_{2-k}(x)$, and this is the same as the shaded area for $y=f_{k}(x)$; ie $A(k)$.
[Line 3 of part (iv) of the official solution should read " x-axis " instead of " y-axis".]
(v) $A(k)=A(2-k) \Rightarrow y=A(x)$ is symmetric about $x=1$
$(A(1-t)=A(2-[1-t])=A(1+t))$
ie if $A(k)$ is translated by 1 to the left, an even function is produced

An even function, which is also a polynomial of degree 4 or less, will be of the form $y=a x^{4}+b x^{2}+c$,

And $y=A(x)$ will be obtained by translating this function by 1 to the right, giving $y=a(x-1)^{4}+b(x-1)^{2}+c$,

So that $A(k)=a(k-1)^{4}+b(k-1)^{2}+c$, as required.

