2012 MAT - Q7 (3 pages; 15/10/22)

Solution

(i)

1,2
and $1+2$ is a multiple of 3
Similarly for
2,1
(ii)

B can play 1 on his 1 st go. Then A can either play 0 or 2 . In both cases, B can obtain a multiple of 3 :

0,1	0,2

0,1	2,0

(iii)

0,2
and $0+2$ is 1 less than a multiple of 3
Similarly for
2,0
(iv) After

1,2

A could just play 1, and B would be back to where he started (but having wasted a go), as the total after

1,2 1

is congruent mod 3 to the total after

1

(v)

1,0	1,0				B wins, so A avoids 1 on 2nd go

So A should play 2 on her $2^{\text {nd }}$ go.
[At first sight, the question is ambiguous here. Does it just mean: "What should Amy play on her $2^{\text {nd }}$ go?" (the simplest interpretation), or does it mean "What should Amy's strategy be for the rest of the game?" However, on reading (vi), we see that it isn't a foregone conclusion that A will win, and so (iv) must mean "What should Amy play on her $2^{\text {nd }}$ go?"]
(vi) From (iv), we see that the game should start off with

1,0	2

1,0	2,0	1,0	1,0		B wins, so A avoids 1 on 4th go
1,0	2,0	1,0	2,0	$1, \mathrm{X}$	B can't win, so B avoids 0 on $4^{\text {th }}$ go
1,0	2,0	1,0	2,1	0,1	B wins, so A avoids 0 on 5th go
1,0	2,0	1,0	2,1	$2, \mathrm{X}$	B can't win, so B avoids 1 on $4^{\text {th }}$ go, and therefore B avoids 0 on $3^{\text {rd }}$ go
1,0	2,0	1,2	0,2		B wins, so A avoids 0 on 4th go
1,0	2,0	1,2	$1, \mathrm{X}$		B can't win, so B avoids 2 on 3rd go, and therefore B avoids 0 on 2nd go
1,0	2,1	0,1			B wins, so A avoids 0 on 3rd go
1,0	2,1	$2, \mathrm{X}$			B can't win, so B avoids 1 on 2nd go, and so B has no workable option on 2 nd will wo, and therefore A

