2012 MAT Paper - Multiple Choice (8 pages; 9/10/20)

Q1/A

Introduction

It is possible to find an expression for $\frac{d y}{d x}$ in terms of x and y, and hence produce the equation of the tangent to a general point on the circle. This can then be compared with (a)-(d). However, as this is the first question on the paper, a much simpler approach is to be expected; namely just drawing the circle and the lines.

Solution

Referring to the diagram, the lines in (a), (c) \& (d) are not tangents to the circle, and so the answer must be (b).

Q1/B

Solution

$N=2^{k+2 m+3 n}=\left(2^{m}\right)^{2}\left(2^{n}\right)^{2} 2^{k+n}$
Then in order to be able to write 2^{k+n} as a square, $k+n$ has to be even.

So the answer must be (d).

Q1/C

Solution
(b): $\log _{3}\left(9^{2}\right)=2 \log _{3} 9=4$
(c): $\left(3 \sin \left(\frac{\pi}{3}\right)\right)^{2}=\left(3\left(\frac{\sqrt{3}}{2}\right)\right)^{2}=\frac{27}{4}>4$, so (c) can be eliminated
(a): $(\sqrt{3})^{3}=3 \sqrt{3}>3(1.5)=4.5>4$, so (a) can be eliminated (d): $\log _{2}\left(\log _{2}\left(8^{5}\right)\right)=\log _{2}\left(5 \log _{2} 8\right)=\log _{2}(15)<\log _{2}(16)=4$
so that (d) is smaller than (b)
So the answer must be (d).

Q1/D

Solution

$\mathrm{A}(\mathrm{c})$ increases at its greatest rate when $c=0$, and this agrees with (a) only.

So the answer is (a).
[Alternatively: $A(0)=0.5$, so that (d) can be eliminated.

Then, for $c \leq 0, A(c)=\int_{-c}^{1} x+c d x=\left[\frac{1}{2} x^{2}+c x\right]_{-c}^{1}$
$=\left(\frac{1}{2}+c\right)-\left(\frac{1}{2} c^{2}-c^{2}\right)=\frac{1}{2} c^{2}+c+\frac{1}{2}$
Option (b) is therefore eliminated, as it isn't a quadratic function for $c \leq 0$; whilst (c) is the wrong-shaped quadratic (being ' n shaped', rather than 'u-shaped'). Also $A^{\prime}(c)=c+1$, so that $A^{\prime}(0)=1$, and this is inconsistent with (c), which shows a gradient of zero.]

Q1/E

Solution

(b) can be eliminated, as it implies a y-intercept of 0 ;
(c) can be eliminated, as it implies a negative y-intercept;
[Both (a) \& (d) have the right shape, being quintics with a negative coefficient of x^{5}.]
(a) can be eliminated, as it implies that the graph should meet the x-axis at $x=3 \&-3$ (both stationary points), and $x=1$ (but this isn't consistent with the actual graph)
[(d) implies that the graph should meet the x-axis at $x=1 \&-1$ (both stationary points), and $x=3$ (which is consistent with the actual graph)]

So the answer is (d).

Solution

As $\cos x>0$ for $-\frac{\pi}{2}<x<\frac{\pi}{2}$, the 1 st integral is positive.
As $\sin x<0$ for $\pi<x<2 \pi$, the 2nd integral is negative.
As $\cos 3 x>0$ (and therefore $\frac{1}{\cos 3 x}>0$) for $0<x<\frac{\pi}{8}$, the 3rd integral is positive.

Hence $T<0$.
So the answer is (b).

Q1/G

Solution

We can observe from $x+y=k$, or $y=k-x$, that only positive values of k will result in this line passing through the 1st quadrant (where there are positive values for $x \& y$). This eliminates (a) and (d).

If $k=2$, then both eq'ns become $x+y=2$, which has positive sol'ns for $x \& y$. So (b) can't be true, and hence (by elimination),

(c) is the answer.

[The alternative algebraic approach is as follows:
$2 x+k y=4, x+y=k$
$\Rightarrow 2(k-y)+k y=4$
$\Rightarrow y(k-2)=4-2 k$
$\Rightarrow y=\frac{4-2 k}{k-2}=-2$, provided that $k \neq 2$
But we only want positive solutions.

If $k=2$, the original equations become $x+y=2$, which has positive solutions.

Thus positive solutions only exist when $k=2$.]

Q1/H

Solution

Referring to the diagram, the total area between the curve and the x-axis (where an area below the x-axis counts as negative) can only be zero when $x=2 \pi$ (for $0<x \leq 2 \pi$).

So the answer is (b).

Note

If $f(x)=\sin (\sin x)$, then $f^{\prime}(x)=\cos (\sin x) \cos x$, by the Chain rule.

Thus $f^{\prime}(0)=1, f^{\prime}\left(\frac{\pi}{2}\right)=0, f^{\prime}(\pi)=-1$, and so the graph of $y=\sin (\sin x)$ has the same shape as $y=\sin x$, but has a smaller amplitude.

Q1/I

Solution

From the forms of most of the multiple choice options, it may be worthwhile to find an expression for $\frac{A}{P}$.

Referring to the diagram, the perpendicular height of the equilateral triangle is $L \sin 60^{\circ}=L \frac{\sqrt{3}}{2}$, and therefore its area is $\frac{1}{2} L\left(L \frac{\sqrt{3}}{2}\right)=\frac{L^{2} \sqrt{3}}{4}$.

By a standard result, the centre of mass of the triangle lies $\frac{2}{3}$ of the way along the median from a vertex to the opposite side (a median being the line from a vertex to the midpoint of the opposite side), and by symmetry the centre of mass is the centre of the circle. Thus the radius is $\frac{2}{3}$ of the height of the triangle; ie $\frac{2}{3} \cdot L \frac{\sqrt{3}}{2}=\frac{L}{\sqrt{3}}$
Then, as $2 \pi r=10, \frac{A}{P}=\frac{L^{2} \sqrt{3}}{4} \div 3 L=\frac{L}{4 \sqrt{3}}=\frac{r}{4}=\frac{5}{4 \pi}$
So the answer is (a).

Q1/J

Solution

From the 1st diagram, we can see that the region of the circle RPQ is smallest when P coincides with R, and increases until P is halfway between R and Q . Thereafter it decreases again, by symmetry.

From the 2nd diagram, the required maximum area is the sum of the area of the sector RCQ and the areas of the triangles $P Q C$ and $P R C$ (the latter two being equal). Thus the maximum area is
$\frac{1}{2}(1)^{2}(2 \theta)+2\left(\frac{1}{2}\right)(1)(1) \sin \left(\frac{1}{2}(2 \pi-2 \theta)\right)$
$=\theta+\sin (\pi-\theta)$
$=\theta+\sin \theta$
So the answer is (b).

[It is also possible to observe what happens when $\theta=\frac{\pi}{2}$: the area becomes that of a semi-circle, together with a right-angled isosceles triangle (see the 3rd diagram), giving $\frac{1}{2} \pi(1)^{2}+\frac{1}{2}\left(\frac{2}{\sqrt{2}}\right)\left(\frac{2}{\sqrt{2}}\right)=\frac{\pi}{2}+1$, which is only consistent with (b).]

