2011 MAT Paper - Multiple Choice (7 pages; 30/9/22)

Q1/A

Solution

(a) starts in the wrong quadrant, and so can be eliminated.

If $f(x)=x^{3}-x^{2}-x+1$,
$f^{\prime}(x)=3 x^{2}-2 x-1=(x-1)(3 x+1)$
[Had $(x-1)$ not been a factor, (c) could have been eliminated.]
Thus there is a stationary point at $x=1$,
and so the answer must be (c), by elimination.
[Alternative methods:
(i) Consider x-coordinate of point of inflexion $\left(-\frac{b}{3 a}=\frac{1}{3}\right)$
(ii) Sum of roots is expected to be $-\frac{b}{a}=1$, which rules out (a), (b) \& (d), and is consistent with (c).]

Q1/B

Solution

Let the sides of the rectangle be $x \& y$. Then $P=2(x+y)$ and $A=x y$.

Of the 4 possibilities, (c) is the first one that looks feasible.
Then $P^{2}-16 A=4\left(x^{2}+y^{2}+2 x y\right)-4(4 x y)=4(x-y)^{2} \geq 0$
So the answer is (c).

Q1/C

Solution

Let $y=x^{3}-9 x^{2}+631$.
Then $\frac{d y}{d x}=0 \Rightarrow 3 x^{2}-18 x=0 \Rightarrow x=0$ or $3 x-18=0$; ie $x=6$

Thus, $x=5$ is the largest integer, for which $y(x)>y(x+1)$.
So the answer is (a).

Notes

The official sol'ns are missing a " $>$ " sign; ie $-3 n^{2}+15 n+8>0$ Using the 'official' method, to be absolutely sure that $n=5$ is the largest value, we can set $\frac{15+\sqrt{A}}{6}=5$; which gives $A=225$, so that $\frac{15+\sqrt{321}}{6}>5$ (and already shown to be <5.5), whilst $\frac{15-\sqrt{321}}{6}<5$

Q1/D
Solution

One or both of the inequalities is true for the following regions:
$\left[\frac{\pi}{12}, \frac{5 \pi}{6}\right] \&\left[\pi+\frac{\pi}{12}, \pi+\frac{5 \pi}{12}\right]$
So the required proportion is $\frac{\left(\frac{(9+4) \pi}{12}\right)}{2 \pi}=\frac{13}{24}$
So the answer is (b).

Q1/E
Solution

Drawing in the radius CD , as in the diagram,
$\sin \alpha=\frac{r}{d} \& \frac{\sin \beta}{r}=\frac{\sin \gamma}{d}$
so that $\sin \alpha=\frac{\sin \beta}{\sin \gamma}$ or $\sin \beta=\sin \alpha \sin \gamma$
So the answer is (b).

Q1/F

Solution

$x^{2}+y^{2}+4 x \cos \theta+8 y \sin \theta+10=0$
$\Rightarrow(x+2 \cos \theta)^{2}-4 \cos ^{2} \theta+(y+4 \sin \theta)^{2}-16 \sin ^{2} \theta+10=0$
Then, for a circle of radius $r, r^{2}=4 \cos ^{2} \theta+16 \sin ^{2} \theta-10$
$=4+12 \sin ^{2} \theta-10$
$=12 \sin ^{2} \theta-6$
And $12 \sin ^{2} \theta-6>0 \Rightarrow \sin ^{2} \theta>\frac{1}{2}$,
so that, for $0 \leq \theta<\pi, \sin \theta>\frac{1}{\sqrt{2}}$
$\Rightarrow \frac{\pi}{4}<\theta<\frac{3 \pi}{4}$
So the answer is (b).

Q1/G

Solution

Note that, for $-1 \leq x \leq 1,0 \leq x^{2} \leq 1$
so that $-1 \leq x^{2}-1 \leq 0$
So $f\left(x^{2}-1\right)=\left(x^{2}-1\right)+1$ (since the equation of the left-hand sloping part of the graph is $y=\underset{4}{x}+1)$
and hence $\int_{-1}^{1} f\left(x^{2}-1\right) d x=\int_{-1}^{1} x^{2} d x=\left[\frac{1}{3} x^{3}\right]_{-1}^{1}=\frac{2}{3}$
So the answer is (d).

Q1/H

Solution

$x=8^{\log _{2} x}-9^{\log _{3} x}-4^{\log _{2} x}+\log _{0.5} 0.25$
$=2^{3 \log _{2} x}-3^{2 \log _{3} x}-2^{2 \log _{2} x}+2$
$=\left(2^{\log _{2} x}\right)^{3}-\left(3^{\log _{3} x}\right)^{2}-\left(2^{\log _{2} x}\right)^{2}+2$
$\Rightarrow x=x^{3}-x^{2}-x^{2}+2$
$\Rightarrow x^{3}-2 x^{2}-x+2=0$
[Unsurprisingly,] $x=1$ is a root,
giving $(x-1)\left(x^{2}-x-2\right)=0$,
so that $(x-1)(x+1)(x-2)=0$
and there are two positive values of x.
So the answer is (c).

Q1/I

Solution

Let $y=\sin ^{2} x$, so that $y^{4}+(1-y)^{3}=1$
$\Rightarrow y^{4}-y^{3}+3 y^{2}-3 y=0$
$\Rightarrow y\left(y^{3}-y^{2}+3 y-3\right)=0$
$\Rightarrow y(y-1)\left(y^{2}+3\right)=0$
$\Rightarrow \sin ^{2} x=0$ or 1
$\Rightarrow x=0, \pi, \frac{\pi}{2}$ or $\frac{3 \pi}{2}$
So the answer is (b).

Q1/J

Solution

$f(1)=1$
$f(2)=f(1)=1$
$f(3)=[f(1)]^{2}-2=-1$
$f(4)=f(2)=1$
$f(5)=[f(2)]^{2}-2=-1$
$f(6)=f(3)=-1$
$f(7)=[f(3)]^{2}-2=-1$
$f(8)=f(4)=1$
Thus $f(n)=-1$ when n is odd (except for $n=1$).
For even $n, f(n)=1$ if n is a power of 2 ,
and $f(n)=-1$ if n is of the form $\left(2^{k}\right)(2 p+1)$ (ie all other even numbers)

Of the 100 values being added,
$n=1 \Rightarrow 1$ [1 value]
other odd $\Rightarrow-1$ [49 values]
powers of $2 \Rightarrow 1$ [6 values]
other even numbers $\Rightarrow-1$ [44 values]
So $f(1)+f(2)+f(3)+\cdots+f(100)$
$=(1+6)-(49+44)=-86$
So the answer is (a).

