2009 MAT - Q6 (3 pages; 7/10/22)

Solution

(i) Let $A=1$ denote A is telling the truth, and $A=0$ denote A is lying, and similarly for B and C .

Then the 3 statements can be written as:
$A=1 \Rightarrow B=0$ and $A=0 \Rightarrow B=1$; ie $A=1-B$
$B=1-C$
$C=1$
Hence $A=1-(1-C)=C$
And so $A=1, B=0, C=1$
ie A and C are telling the truth and B is lying
(ii) The 3 statements can be written as:
$A=B$
$B=A$
$C=1-A$
So either A and B are telling the truth and C is lying,
Or A and B are lying and C is telling the truth.
(iii) The 1st statement can be written as:

If $A=1$, then $B=C=0$; ie $B+C=0$
If $A=0$, then Bor $C=1$; ie $(1-B)(1-C)=0$
These 2 conditions can be combined into
$A(B+C)+(1-A)(1-B)(1-C)=0$

The 2nd statement can be written as:
If $B=1$, then $A=1$ or $C=0$; ie $(1-A) C=0$
If $B=0$, then $A=0$ and $C=1$; ie $[A+[1-C])=0$
These 2 conditions can be combined into
$B(1-A) C+(1-B)(A+[1-C])=0$

The 3rd statement can be written as:
If $C=1$, then $A=B=1$; ie $(1-A)+(1-B)=0$
If $C=0$, then $A=0$ or $B=0$; ie $A B=0$
These 2 conditions can be combined into
$C[(1-A)+(1-B)]+(1-C) A B=0$

A truth table can be constructed, where the final column indicates whether the row satisfies all 3 of the conditions.

A	B	C	
1	1	1	X
1	1	0	X
1	0	1	X
1	0	0	X
0	1	1	X
0	1	0	Y
0	0	1	X
0	0	0	X

Thus the only solution is: B is telling the truth, and A \& C are lying.

