2009 MAT - Multiple Choice (6 pages; 28/8/20)

## Q1/A

## Solution

$I(a)=\int_{0}^{1}\left(x^{2}-a\right)^{2} d x=\left[\frac{1}{5} x^{5}-2 a \cdot \frac{1}{3} x^{3}+a^{2} x\right]_{0}^{1}$
$=\frac{1}{5}-\frac{2}{3} a+a^{2}$
$=\frac{1}{5}+\left(a-\frac{1}{3}\right)^{2}-\frac{1}{9}$
Hence the smallest value of $I(a)$ is $\frac{1}{5}-\frac{1}{9}=\frac{4}{45}$
So the answer is (b).

Q1/B
Solution
$x^{2}+y^{2}+6 x+8 y=75 \Rightarrow(x+3)^{2}-9+(y+4)^{2}-16=75$
$\Rightarrow(x+3)^{2}+(y+4)^{2}=100$
ie a circle centre $(-3,-4)$ with radius 10


Referring to the diagram, the required point will be on the radius passing through the Origin. Hence the distance is 5.

## So the answer is (c).

## Q1/C

## Solution

$x^{4}=(x-c)^{2} \Rightarrow x^{2}=|x-c|$


The diagram show the critical point at which the number of roots changes from 4 to 2 (for larger values of $c$ ). By symmetry, if the critical value of c is $c_{1}$, then $-c_{1}$ will also be a critical value (with the number of roots being 2 for $c<-c_{1}$. As there is only one answer of the form $-c_{1} \leq c \leq c_{1}$,

## the answer must be (b).

[As a check, the gradients of $y=x^{2} \& y=x-c$ are equal when $2 x=1$; ie $x=\frac{1}{2}$, so that the line $y=x-c$ has to pass through the point $\left(\frac{1}{2},\left(\frac{1}{2}\right)^{2}\right)$, and hence $\frac{1}{4}=\frac{1}{2}-c$, giving $\left.c=\frac{1}{4}\right]$

## Q1/D

## Solution

[Because of the presence of $(-1)^{n+1}$, it is worth considering separately even and odd $n$.]

With even $n$, the LHS becomes $1-2+3-4+\cdots-2 m$, writing $n=2 m$.

By grouping the terms as $(1-2)+(3-4)+\cdots-2 m$, we see that this has a negative value.

So $n$ must be odd, and the LHS becomes
$1-2+3-4+\cdots+(2 m+1)$, writing $n=2 m+1$
And the terms can be grouped to give
$(1-2)+(3-4)+\cdots([2 m-1]-2 m)+(2 m+1)$
$=m(-1)+(2 m+1)=m+1$
So we want $m+1 \geq 100$, and hence
$n=2 m+1 \geq 2(99)+1=199$

## So the answer is (c).

## Q1/E

## Solution

$2^{\sin ^{2} x}+2^{\cos ^{2} x}=2 \Rightarrow 2^{\sin ^{2} x}+2^{1-\sin ^{2} x}=2$
Let $y=2^{\sin ^{2} x}$, so that $y+\frac{2}{y}=2$
and $y^{2}-2 y+2=0$
As the discriminant of these quadratic is negative, there are no sol'ns.

So the answer is (a).

## Q1/F

## Solution

We can investigate the intersection of

$$
y=3 x^{4}-16 x^{3}+18 x^{2} \text { and } y=-k
$$

To simplify matters, we can make the substitution $c=-k$
A quick sketch reveals that the answer has to take the form $0<c<a$, and so $-a<k<0$; ie the answer is (d), without further calculations (though it could be found directly by determining stationary points).

## Q1/G

## Solution

$\sin x=\sin y \Rightarrow y=x \pm 2 k \pi$ or $y=\pi-x \pm 2 k \pi$
So the answer is (c).

## Q1/H

## Solution

Trapezium rule estimate for $\int_{0}^{1} 2^{x} d x$ is

$$
\begin{aligned}
& \frac{1}{2}\left(\frac{1}{N}\right)\left\{2^{0}+2^{1}+2\left(2^{\frac{1}{N}}+2^{\frac{2}{N}}+\cdots+2^{\frac{N-1}{N}}\right)\right\} \\
& =\frac{1}{2 N}\left\{1+2\left(1+2^{\frac{1}{N}}+\cdots+2^{\frac{N-1}{N}}\right\}\right.
\end{aligned}
$$

$=\frac{1}{2 N}\left\{1+\frac{2\left(\left(2^{\frac{1}{N}}\right)^{N}-1\right)}{2^{\frac{1}{N}}-1}\right\}$
$=\frac{1}{2 N}\left\{1+\frac{2}{2^{\frac{1}{N}-1}}\right\}$
So the answer is (b).

## Q1/I

## Solution

$x^{2}-1$ will be a factor when $x-1 \& x+1$ are both factors
Writing $f(x)=n^{2} x^{2 n+3}-25 n x^{n+1}+150 x^{7}$,
the Factor theorem gives
$f(1)=n^{2}-25 n+150=0$
and $f(-1)=-n^{2}-25 n-150=0$ if $n$ is odd
or $-n^{2}+25 n-150=0$ if $n$ is even,
with no sol'n if $n$ is an integer [it's possible that the questionsetter forgot to say that $n$ has to be an integer]

So, for odd $n, n^{2}-25 n+150=0 \& n^{2}+25 n+150=0$,
which isn't possible (as $n=0$ isn't possible, because $x^{2}-1$ isn't a factor of $150 x^{7}$ ).

For even $n, n^{2}-25 n+150=0$ or $(n-15)(n-10)=0$, so that $n=15$ (reject, as not even) or 10

## So the answer is (b).

## Solution

The presence of $8 y^{3}$ suggests that $(x+2 y)^{3}$ might possibly expand to give the LHS - which it does.
This then gives $x+2 y=2^{10}$, and we can simplify matters by writing $x=2 u$ (since $x$ has to be even), to give $u+y=2^{9}$.
Then $y$ can take the values $1,2, \ldots, 2^{9}-1$ (with $x=2^{10}-2 y$ ), so that there are $2^{9}-1$ such pairs.

So the answer is (c).

