2008 MAT - Q5 (4 pages; 5/10/22)

Solution

(i) The lockers that are closed after the 3rd student are those that: are even [and were closed after the $2^{\text {nd }}$ student], and not a multiple of 3 ; or
are odd [and were open after the $2^{\text {nd }}$ student], and are a multiple of 3

Thus: $(2,3,4),(8,9,10),(14,15,16), \ldots,(998,999,1000)$ ie 3 for every alternate multiple of 3

As 999 is the 333 rd multiple of 3 , and the $\frac{332}{2}+1=167$ th in the sequence of multiples of 3 that are included, the answer is $3 \times 167=501$
(ii) The lockers that are closed after the 4th student are those that:
(a) are closed after the 3rd student, and are not multiples of 4; or
(b) are open after the 3rd student, and are multiples of 4

Thus, for (a): $(2,3),(9,10),(14,15), \ldots,(998,999)$,
giving 2 for every alternate multiple of 3
As 999 is the 333 rd multiple of 3 , and the $\frac{332}{2}+1=167$ th in the sequence of multiples of 3 that are included, the total for (a) is $2 \times 167=334$

The lockers that are open after the 3rd student are:
$1,(5,6,7),(11,12,13),(17,18,19),(23,24,25), \ldots,(995,996$, 997),
and of these the multiples of 4 are:
$12,24, \ldots, 996(=83 \times 12)$; ie multiples of 12
Thus the total for (b) is 83 , and so the answer is $334+83=417$

Alternative method

The table below shows the outcome for the different lockers. The locker will be closed if there are 1 or 3 Ys. The cycle repeats itself after 12 .

	multiple of 2	multiple of 3	multiple of 4	outcome
1	X	X	X	Open
2	Y	X	X	Closed
3	X	Y	X	Closed
4	Y	X	Y	Open
5	Y	Y	X	Open
6	Y	Y	X	Open
7	Y	X	X	Closed
9	X	X	X	Open
10	Y	Y	Y	Closed
11			Ypen	
12				Closed

Thus 5 of the lockers from 1-12 will be closed after the 4th student.

As $83 \times 12=996$, the answer is:
$(83 \times 5)+2$ (there being 4 lockers in the 84 th cycle of 12 , of which the 2nd \& 3rd will be Closed)
$=417$
(iii) Every factor of 100 results in a change of state of the 100th locker.

The factors are: $2,4,5,10,20,25,50 \& 100$
As there are an even number of these, the 100th locker will in the same state as after the 1 st student; ie Open.
(iv) Every factor of 1000, up to 100, results in a change of state of the 1000th locker.

The prime factorisation of 1000 is $2^{3} \times 5^{3}$, which can help in producing a systematic list of the required factors:
$5,5^{2}, 2,2 \times 5,2 \times 5^{2}, 2^{2}, 2^{2} \times 5,2^{2} \times 5^{2}, 2^{3}, 2^{3} \times 5$
Or $5,25,2,10,50,4,20,100,8,40$
As there are an even number of these, the 1000th locker will in the same state as after the 1st student; ie Open.
[The examiners have refrained from asking for the state of the 1000th locker after the 1000th student has walked past. (Perhaps they intended to originally).

Let $f(n)$ be the number of factors (other than 1) of the number n.

Then it can be seen that, if m \& n have no common factors,
$f(m n)=(f(m)+1)(f(n)+1)-1$
or $f(m) f(n)+f(m)+f(n)$
For example, with $m=25 \& n=4$, the factors of 100 are formed by combining one factor from the set $\{1,5,25\}$ and one from the set $\{1,2,4\}$, but then discarding the number 1 ; ie there are $3 \times 3-1=8$ factors, as found in (iii).

Then $f(1000)=f\left(2^{3} \times 5^{3}\right)=\left(f\left(2^{3}\right)+1\right)\left(f\left(5^{3}\right)+1\right)-1$
$=(3+1)(3+1)-1=15$
As there are an odd number of these factors, the 1000th locker will be in the opposite state as after the 1st student; ie Closed.]

