2007 MAT - Q6 (4 pages;17/11/23)

Solution

(i) Let $A=1$ denote A always tells the truth, $A=\frac{1}{2}$ denote A tells truth or lies at random, and $A=0$ denote A always lies.

From A's statement,
$A=1 \Rightarrow A=0$; ie a contradiction
$A=\frac{1}{2}$ \& currently telling the truth $\Rightarrow A=0$; ie a contradiction
$A=\frac{1}{2} \&$ currently lying $\Rightarrow A=1$ or $\frac{1}{2}$; ie consistent with $A=\frac{1}{2}$
$A=0 \Rightarrow A=1$ or $\frac{1}{2}$; ie a contradiction
So $A=\frac{1}{2}$
Then B's statement implies that $B=0\left(B\right.$ cannot $=\frac{1}{2}$, as $\left.A=\frac{1}{2}\right)$.
Hence $G=1$.
So Alf tells the truth or lies at random, Beth always lies, and Gemma always tells the truth.
(ii) Define the following states [to improve the notation!]:
$X=1$: X always tells the truth
$X=2: \mathrm{X}$ always lies
$X=3$: X tells the truth or lies at random, and is currently telling the truth
$X=4: \mathrm{X}$ tells the truth or lies at random, and is currently lying

Suppose that $G=1$. Then, from G's statement, $B=1$. But it isn't possible for both $B \& G$ to equal 1 . So $G \neq 1$.

Suppose instead that $G=2$. Then, from G's statement, $B \neq 1$. And it isn't possible for both B \& G to equal 2. Also, from B's statement, B cannot equal 4, but could equal 3 .

So one solution is that $G=2, B=3$, and therefore $A=1$.
Suppose instead that $G=3$. Then, from G's statement, $B=1$. But this is contradicted by B's statement. So $G \neq 3$.

Suppose instead that $G=4$. Then, from G's statement, $B \neq 1$. And it isn't possible for B to equal 3 or 4 (ie tell the truth or lie at random)(as $G=4$). But $B=2$ is inconsistent with B's statement. So $G \neq 4$.

Thus the only solution is that $A=1, B=3$ and $G=2$;
ie Alf always tells the truth, Gemma always lies, and Beth tells the truth or lies at random
(iii) Suppose that $\boldsymbol{A}=1$.

Then Alf's statement implies that $B=3$ or 4 .
Gemma's statement implies that $G=2$ or 4 , so that either $B=3 \& G=2$ (as if one person is 3 or 4 , then no one else can be 3 or 4), or $B=4 \& G=2$

Thus $A=1, B=3$ or $4, G=2$
Beth's statement is then consistent with this, as she could be telling the truth or lying.

So $A=1, B=3$ or $4, G=2$ is a possibility (${ }^{*}$)

Suppose instead that $\boldsymbol{A}=\mathbf{2}$.
Then Alf's statement implies that $B=1$, and so $G=3$ or 4 .
And Gemma's statement implies that $G=3$.
If $B=1$, then Beth's statement means that we can deduce who is telling the truth. But this is contradicted by the fact that it is possible that either $A=1($ from (*)) or $B=1$.

So $\boldsymbol{A} \neq 2$.

Suppose instead that $\boldsymbol{A}=3$.
But this is contradicted by Alf's statement.
So $\boldsymbol{A} \neq 3$.

Suppose instead that $A=4$.
This is then consistent with Alf's statement.
Then either $B=1 \& G=2$ (A) or $B=2 \& G=1$ (B)
If (A) is true, then Gemma's statement implies that $A \neq 2$ (which is consistent with $A=4$). But, as before, Beth's statement means that we can deduce who is telling the truth. But this is contradicted by the fact that it is possible that either
$A=1($ from $(*))$ or $B=1$.
If instead (B) is true, then Gemma's statement implies that $A=2$, which contradicts $A=4$.

So $\boldsymbol{A} \neq 4$.

So the only possibility is $A=1, B=3$ or $4, G=2$
ie Alf always tells the truth, and Gemma always lies, with Beth telling the truth or lying at random

