Linear Programming - Q9b: Simplex method [Practice/M](18/6/21)

Maximise $5 x-2 y+4 z$, subject to the following constraints:
$2 x+y-z \leq 6$
$x-y+2 z \geq 5$
$3 x+y-7 z \geq 4$
$x \geq 0, y \geq 0, z \geq 0$
Apply the Big M (Simplex) method, as far as establishing the pivot row for the 2nd time.

Solution

Step 1: (As for the 2 Stage method), create equations with either slack variables, or surplus and artifical variables, as appropriate
$P-5 x+2 y-4 z=0$
$2 x+y-z+s_{1}=6$
$x-y+2 z-s_{2}+a_{1}=5$
$3 x+y-7 z-s_{3}+a_{2}=4$

Step 2: Modify the objective to maximising $P^{\prime}=5 x-2 y+4 z-$ $M\left(a_{1}+a_{2}\right)$
$=5 x-2 y+4 z-M\left[\left(5-x+y-2 z+s_{2}\right)+(4-3 x-y+7 z+\right.$ $\left.\left.s_{3}\right)\right]$
$=(5+4 M) x-2 y+(4-5 M) z-M s_{2}-M s_{3}-9 M$
(where M is a large number)

Step 3: Represent the equations in a Simplex tableau:

P^{\prime}	x	y	z	s_{1}	s_{2}	s_{3}	a_{1}	a_{2}	value	row
1	$-5-4 M$	2	$-4+5 M$	0	M	M	0	0	$-9 M$	(1)
0	2	1	-1	1	0	0	0	0	6	(2)
0	1	-1	2	0	-1	0	1	0	5	(3)
0	(3)	1	-7	0	0	-1	0	1	4	(4)

Step 4: As we are maximising P^{\prime}, we look for large negative coefficients of variables in the 1st row (so that when the variable is maximised, it will increase P^{\prime} as much as possible). Here we
take x as the pivot column, and perform the ratio test to establish the pivot row.
row $2: \frac{6}{2}=3$; row $3: \frac{5}{1}=5$; row $4: \frac{4}{3}$; so the pivot row is row 4 (indicated in the table above by the brackets - or circling if handwritten)

Step 5: Eliminate x from rows 1-3

P^{\prime}	x	y	z	s_{1}	s_{2}	s_{3}	a_{1}	a_{2}	value	row
1	0	$\frac{4 M+11}{3}$	$\frac{-13 M-47}{3}$	0	M	$\frac{-M-5}{3}$	0	$\frac{5+4 M}{3}$	$\frac{-11 M+20}{3}$	$(5)=(1)+$ $(5+4 \mathrm{M})(8)$
0	0	$\frac{1}{3}$	$\frac{11}{3}$	1	0	$\frac{2}{3}$	0	$-\frac{2}{3}$	$\frac{10}{3}$	$(6)=(2)$ $-2(8)$
0	0	$-\frac{4}{3}$	$\left(\frac{20}{3}\right)$	0	-1	$\frac{1}{3}$	1	$-\frac{1}{3}$	$\frac{11}{3}$	$(7)=(3)-$ (8)
0	1	$\frac{1}{3}$	$-\frac{7}{3}$	0	0	$-\frac{1}{3}$	0	$\frac{1}{3}$	$\frac{4}{3}$	$(8)=(4) \div 3$

Step 6: As the value of P^{\prime} still involves M, we look for large negative coefficients of variables in the 1st row again, and so take z as the pivot column. Row 8 can be ignored, when establishing the pivot row, due to its negative coefficient of z.
row $6: \frac{\left(\frac{10}{3}\right)}{\left(\frac{11}{3}\right)}=\frac{10}{11}$; row $7: \frac{\left(\frac{11}{3}\right)}{\left(\frac{20}{3}\right)}=\frac{11}{20}<\frac{10}{11}$, so the pivot row is row 7

