Linear Programming - Q9a: Simplex method [Practice/M](18/6/21)

Maximise $5 x-2 y+4 z$, subject to the following constraints:
$2 x+y-z \leq 6$
$x-y+2 z \geq 5$
$3 x+y-7 z \geq 4$
$x \geq 0, y \geq 0, z \geq 0$
Apply the 1 st stage of the 2 Stage Simplex method, as far as establishing the pivot row for the 2 nd time.

Solution

Step 1: Create equations with either slack variables, or surplus and artifical variables, as appropriate.
$P-5 x+2 y-4 z=0$
$2 x+y-z+s_{1}=6$
$x-y+2 z-s_{2}+a_{1}=5$
$3 x+y-7 z-s_{3}+a_{2}=4$

Step 2: Let $A=a_{1}+a_{2}=\left(5-x+y-2 z+s_{2}\right)+(4-3 x-y+$ $\left.7 z+s_{3}\right)$
$=9-4 x+5 z+s_{2}+s_{3}$
The 1st stage of the method is to minimise A.

Step 3: Represent the equations in a Simplex tableau:

A	P	x	y	z	s_{1}	s_{2}	s_{3}	a_{1}	a_{2}	value	row
1	0	4	0	-5	0	-1	-1	0	0	9	(1)
0	1	-5	2	-4	0	0	0	0	0	0	(2)
0	0	2	1	-1	1	0	0	0	0	6	(3)
0	0	1	-1	2	0	-1	0	1	0	5	(4)
0	0	(3)	1	-7	0	0	-1	0	1	4	(5)

Step 4: As we are minimising A, we look for large positive coefficients of variables in the 1st row (so that when the variable
is maximised, it will reduce A as much as possible). Here there is no choice, and we take x as the pivot column, and perform the ratio test to establish the pivot row (ignoring any rows with negative coefficients of x).
row $3: \frac{6}{2}=3$; row $4: \frac{5}{1}=5$; row $5: \frac{4}{3}$; so the pivot row is row 5 (indicated in the table above by the brackets - or circling if handwritten)
[Note: It is possible (though less usual) to maximise $-A$ instead.]
Step 5: Eliminate x from rows 1-4

A	P	x	y	z	s_{1}	s_{2}	s_{3}	a_{1}	a_{2}	value	row
1	0	0	$-\frac{4}{3}$	$\frac{13}{3}$	0	-1	$\frac{1}{3}$	0	$-\frac{4}{3}$	$\frac{11}{3}$	$(6)=(1)-4(10)$
0	1	0	$\frac{11}{3}$	$-\frac{47}{3}$	0	0	$-\frac{5}{3}$	0	$\frac{5}{3}$	$\frac{20}{3}$	$(7)=(2)+5(10)$
0	0	0	$\frac{1}{3}$	$\frac{11}{3}$	1	0	$\frac{2}{3}$	0	$-\frac{2}{3}$	$\frac{10}{3}$	$(8)=(3)-2(10)$
0	0	0	$-\frac{4}{3}$	$\left(\frac{13}{3}\right)$	0	-1	$\frac{1}{3}$	1	$-\frac{1}{3}$	$\frac{11}{3}$	$(9)=(4)-(10)$
0	0	1	$\frac{1}{3}$	$-\frac{7}{3}$	0	0	$-\frac{1}{3}$	0	$\frac{1}{3}$	$\frac{4}{3}$	$(10)=(5) \div 3$

Step 6: As A hasn't yet been reduced to zero, we look for large positive coefficients of variables in the 1st row again, and so take z as the pivot column. Rows 7 and 10 can be ignored, when establishing the pivot row, due to their negative coefficients of z.
row 8: $\frac{\left(\frac{10}{3}\right)}{\left(\frac{11}{3}\right)}=\frac{10}{11}$; row $9: \frac{\left(\frac{11}{3}\right)}{\left(\frac{13}{3}\right)}=\frac{11}{13}<\frac{10}{11}$, so the pivot row is row 9

