Linear Programming – Q9a: Simplex method

[Practice/M](18/6/21)

Maximise 5x - 2y + 4z, subject to the following constraints:

- $2x + y z \le 6$
- $x y + 2z \ge 5$
- $3x + y 7z \ge 4$
- $x \ge 0, y \ge 0, z \ge 0$

Apply the 1st stage of the 2 Stage Simplex method, as far as establishing the pivot row for the 2nd time.

Solution

Step 1: Create equations with either slack variables, or surplus and artifical variables, as appropriate.

$$P - 5x + 2y - 4z = 0 (1)$$

$$2x + y - z + s_1 = 6 (2)$$

$$x - y + 2z - s_2 + a_1 = 5 (3)$$

$$3x + y - 7z - s_3 + a_2 = 4 (4)$$

Step 2: Let $A = a_1 + a_2 = (5 - x + y - 2z + s_2) + (4 - 3x - y + 7z + s_3)$ = 9 - 4x + 5z + s₂ + s₃

The 1st stage of the method is to minimise *A*.

Step 3: Represent the equations in a Simplex tableau:

A	P	x	у	Ζ	<i>s</i> ₁	<i>s</i> ₂	<i>S</i> ₃	<i>a</i> ₁	<i>a</i> ₂	value	row
1	0	4	0	-5	0	-1	-1	0	0	9	(1)
0	1	-5	2	-4	0	0	0	0	0	0	(2)
0	0	2	1	-1	1	0	0	0	0	6	(3)
0	0	1	-1	2	0	-1	0	1	0	5	(4)
0	0	(3)	1	-7	0	0	-1	0	1	4	(5)

Step 4: As we are minimising *A*, we look for large positive coefficients of variables in the 1st row (so that when the variable

is maximised, it will reduce A as much as possible). Here there is no choice, and we take x as the pivot column, and perform the ratio test to establish the pivot row (ignoring any rows with negative coefficients of x).

row 3: $\frac{6}{2} = 3$; row 4: $\frac{5}{1} = 5$; row 5: $\frac{4}{3}$; so the pivot row is row 5 (indicated in the table above by the brackets - or circling if handwritten)

[Note: It is possible (though less usual) to maximise -A instead.]

									-		
A	Р	x	У	Ζ	<i>s</i> ₁	<i>s</i> ₂	<i>S</i> ₃	<i>a</i> ₁	<i>a</i> ₂	value	row
1	0	0	$-\frac{4}{3}$	$\frac{13}{3}$	0	-1	$\frac{1}{3}$	0	$-\frac{4}{3}$	$\frac{11}{3}$	(6)=(1)-4(10)
0	1	0	$\frac{11}{3}$	$-\frac{47}{3}$	0	0	5 3	0	5 3	$\frac{20}{3}$	(7)=(2)+5(10)
0	0	0	$\frac{1}{3}$	$\frac{11}{3}$	1	0	2 3	0	$-\frac{2}{3}$	$\frac{10}{3}$	(8)=(3) -2(10)
0	0	0	$-\frac{4}{3}$	$(\frac{13}{3})$	0	-1	$\frac{1}{3}$	1	$-\frac{1}{3}$	$\frac{11}{3}$	(9)=(4) -(10)
0	0	1	$\frac{1}{3}$	$-\frac{7}{3}$	0	0	$-\frac{1}{3}$	0	$\frac{1}{3}$	$\frac{4}{3}$	$(10)=(5)\div 3$

Step 5: Eliminate *x* from rows 1-4

Step 6: As *A* hasn't yet been reduced to zero, we look for large positive coefficients of variables in the 1st row again, and so take *z* as the pivot column. Rows 7 and 10 can be ignored, when establishing the pivot row, due to their negative coefficients of *z*.

row 8:
$$\frac{\left(\frac{10}{3}\right)}{\left(\frac{11}{3}\right)} = \frac{10}{11}$$
; row 9: $\frac{\left(\frac{11}{3}\right)}{\left(\frac{13}{3}\right)} = \frac{11}{13} < \frac{10}{11}$, so the pivot row is row 9