Linear Programming - Q8: Simplex method [Practice/M](18/6/21)

Minimise $-3 x+2 y+z$, subject to the following constraints:
$x+y-4 z \leq 4$
$-x+3 y+2 z \geq-2$
$x \geq 0, y \geq 0, z \geq 0$
Use the ordinary Simplex method to solve this problem.

Solution

Step 1: Rewrite the problem as
Maximise $P=3 x-2 y-z$,
subject to $x+y-4 z \leq 4$ and $x-3 y-2 z \leq 2$
Step 2: Create equations with slack variables [it is possible to skip this step, and go straight to the Simplex tableau]:
$P-3 x+2 y+z=0$
$x+y-4 z+s_{1}=4$
$x-3 y-2 z+s_{2}=2$
Step 3: Represent the equations in a Simplex tableau:

P	x	y	z	s_{1}	s_{2}	value	row
1	-3	2	1	0	0	0	(1)
0	1	1	-4	1	0	4	(2)
0	(1)	-3	-2	0	1	2	(3)

Step 4: Choose x as the pivot column (as it has the largest negative coefficient in the objective row), and perform the ratio test to establish the pivot row.

As $\frac{2}{1}<\frac{4}{1}$, row 3 is the pivot row (indicated in the table above by the brackets - or circling if handwritten).

Step 5: Eliminate x from rows 1 and 2
As the coefficient of x for row 3 is already 1 , no adjustment is needed for that row.

P	x	y	z	s_{1}	s_{2}	value	row
1	0	-7	-5	0	3	6	$(4)=(1)+3(6)$
0	0	(4)	-2	1	-1	2	$(5)=(2)-(6)$
0	1	-3	-2	0	1	2	$(6)=(3)$

Step 6: y now has the largest negative coefficient in the objective row, and as the coefficient of y in row 6 is negative, we can take row 5 as the pivot row.

Step 7: Eliminate y from rows 4 and 6
As the coefficient of y for row 5 is 4 , we need to divide that row by 4 first.

P	x	y	z	s_{1}	s_{2}	value	row
1	0	0	$-8 \frac{1}{2}$	$1 \frac{3}{4}$	$1 \frac{1}{4}$	$9 \frac{1}{2}$	$(7)=(4)+7(8)$
0	0	1	$-\frac{1}{2}$	$\frac{1}{4}$	$-\frac{1}{4}$	$\frac{1}{2}$	$(8)=(5) \div 4$
0	1	0	$-3 \frac{1}{2}$	$\frac{3}{4}$	$\frac{1}{4}$	$3 \frac{1}{2}$	$(9)=(6)+3(8)$

Step 8: Although z has a negative coefficient in the objective row, the other coefficients of z are negative, and so no further progress can be made.

Hence the solution is: $x=3 \frac{1}{2}, y=\frac{1}{2}, z=0, s_{1}=0, s_{2}=0, P=$ $9 \frac{1}{2}$,
and hence the minimised value of $-3 x+2 y+z$ is $-9 \frac{1}{2}$
[Check: $x+y-4 z=4 \leq 4$ and $-x+3 y+2 z=-2 \geq-2$]

