Linear Programming - Q4: Formulating as LP problem

 [9 marks](15/6/21)Exam Boards

OCR:-
MEI: MwA
AQA: -
Edx: -

The network below shows the maximum capacity for each arc of a network. It is required to maximise the flow across the network, from S to T. Formulate this as a linear programming problem.

[9 marks]

Solution

With SA, AB etc being non-negative integers, representing the flows along the arcs:

Maximise $P=\mathrm{SA}+\mathrm{SE}+\mathrm{SH}$, [1 mark]
subject to the following constraints:
$S A \leq 12, S E \leq 3, S H \leq 5$
$A B \leq 5, A C \leq 9, C A \leq 9, A E \leq 10, E A \leq 10$
$B C \leq 3, C B \leq 3, B D \leq 8, D B \leq 8, B T \leq 7$
$C D \leq 6, D C \leq 6, C F \leq 3, F C \leq 3$
$D T \leq 4, G D \leq 7$
$F E \leq 2, E H \leq 5, H E \leq 5$
$F G \leq 5, G F \leq 5, F H \leq 3, H F \leq 3 \quad$ [4 marks]
Inflows must equal outflows:
At A: $S A+E A+C A=A E+A C+A B$
At B: $A B+C B+D B=B T+B D+B C$
At C: $A C+B C+D C+F C=C A+C B+C D+C F$
At D: $B D+C D+G D=D B+D C+D T$
At $E: S E+A E+F E+H E=E A+E H$
At F: $C F+G F+H F=F E+F C+F G+F H$
At G: $F G=G F+G D$
At $\mathrm{H}: S H+E H+F H=H E+H F$
[4 marks]
[The inflow to T will automatically equal the outflow from S.]

