Linear Programming - Q3: Formulating as LP problem

 [6 marks](15/6/21)Exam Boards

OCR:-
MEI: MwA
AQA: -
Edx: -

It is required to find the shortest distance between A and J in the network below. Formulate this as a linear programming problem.

[6 marks]

Solution

With AB, AE etc being binary variables, where $A B=1$ means that the arc $A B$ is travelled along:

Minimise $P=5 A B+9 A E+10 A F+12 A G+7 B C+7 C B+$ $8 B D+8 D B+3 B E+3 E B+4 C D+4 D C+6 D E+6 E D+7 D J+$ $3 E I+3 I E+3 F G+3 G F+2 F I+2 I F+5 F H+5 H F+5 G H+$ $5 H G+3 H I+3 I H+5 I J$
[2 marks]
[Arcs not involving A or J can be travelled along in either direction, and so are duplicated.]
$A B+A E+A F+A G=1$ [the path has to pass along just one of the arcs leading from A$]$
[1 mark]
$D J+I J=1$ [the path has to pass along just one of the arcs leading to J]

$$
A B+E B+D B+C B=B E+B D+B C \quad[1 \text { mark }]
$$

[if we enter B, then we must leave it - each side will total either 0 or 1]
$B C+D C=C B+C D[$ similarly for C$]$
$B D+C D+E D=D B+D C+D E+D J[\mathrm{D}]$
$A E+B E+D E+I E=E B+E D+E I[\mathrm{E}]$
$A F+G F+H F+I F=F G+F H+F I[\mathrm{~F}]$
$A G+F G+H G=\mathrm{GF}+G H[\mathrm{G}]$

$$
F H+G H+I H=H F+H G+H I[\mathrm{H}]
$$

$$
E I+F I+H I=I E+I F+I H+I J[\mathrm{I}][2 \text { marks }]
$$

