Linear Programming – Q2c [14 marks] (18/6/21)

Exam Boards

OCR : D (Year 2)

MEI: MwA

AQA: D (Year 2)

Edx: D1 (Year 2)

The following Linear Programming problem is to be solved:

Minimise
$$P = 3x + 2y$$
,
subject to $5x + 3y \ge 20$
 $y \le 3x$
 $x \ge 0, y \ge 1$

Apply the Big M Simplex method, up to the point where the 1st pivot has been completed, and the 2nd is about to be carried out. [14 marks]

Solution

We wish to maximise -P = -3x - 2y [1 mark] The constraint equations are:

$$5x + 3y - s_1 + a_1 = 20$$

 $y - 3x + s_2 = 0$
 $y - s_3 + a_2 = 1$
 $x, s_1, s_2, s_3 \ge 0$ [3 marks]
Let $P' = -P - M(a_1 + a_2)$
 $= -3x - 2y - M(20 - 5x - 3y + s_1) - M(1 - y + s_3)$
so that $P' + x(3 - 5M) + y(2 - 4M) + Ms_1 + Ms_3 = -21M$
[3 marks]

The initial Simplex tableau is

basic	x	у	s_1	s_2	s_3	a_1	a_2	value
variable								
a_1	5	3	-1	0	0	1	0	20
<i>S</i> ₂	-3	1	0	1	0	0	0	0
a_2	0	1	0	0	-1	0	1	1
P'	3 - 5M	2 - 4M	M	0	M	0	0	-21 <i>M</i>

[4 marks]

Take x as the pivot column [as 3 - 5M < 2 - 4M] [1 mark]

basic	x	у	S_1	s_2	s_3	a_1	a_2	value	ratio
variable									
a_1	5	3	-1	0	0	1	0	20	4
s_2	-3	1	0	1	0	0	0	0	n/a
a_2	0	1	0	0	-1	0	1	1	n/a
P'	3 - 5 <i>M</i>	2 - 4 <i>M</i>	M	0	M	0	0	-21 <i>M</i>	n/a

Applying the ratio test, the pivot row is found to be the 1st one.

[1 mark]

Making the coeff. of *x* equal to 1:

basic	х	у	s_1	s_2	s_3	a_1	a_2	value	row
variable									
a_1	1	0.6	-0.2	0	0	0.2	0	4	1
<i>S</i> ₂	-3	1	0	1	0	0	0	0	2
a_2	0	1	0	0	-1	0	1	1	3
P'	3	2	M	0	M	0	0	-21M	4
	- 5 <i>M</i>	-4M							

[1 mark]

Remove x from rows 2, 3 & 4:

$$R2' = R2 + 3(R1'), R3' = R3, R4' = R4 + (5M - 3)(R1')$$

basic	х	у	s_1	s_2	s_3	a_1	a_2	value	row
variable									
x	1	0.6	-0.2	0	0	0.2	0	4	1'
s_2	0	2.8	-0.6	1	0	0.6	0	12	2'
a_2	0	1	0	0	-1	0	1	1	3'
P'	0	0.2	0.6	0	M	M	0	-M $-$	4'
		-M				- 0.6		12	

[3 marks]