Linear Programming - Q2b [13 marks](18/6/21)

Exam Boards

OCR : D (Year 1)
MEI: MwA
AQA: -
Edx: D1 (Year 1)

The following Linear Programming problem is to be solved:
Minimise $P=3 x+2 y$,
subject to $5 x+3 y \geq 20$
$y \leq 3 x$
$x \geq 0, y \geq 1$
(i) Obtain a solution using a graphical approach. Assume that non-integer solutions are acceptable. [6 marks]
(ii) Obtain a good integer solution. [7 marks]

Solution

(i) The diagram shows the constraint lines, as well as the (dotted) line $3 x+2 y=6$, which is parallel to the objective function.

[3 marks]
As the line representing the objective function moves away from the Origin, it first enters the feasible region at the intersection of $5 x+3 y=20$ and $y=1$; ie at the vertex $\left(3 \frac{2}{5}, 1\right)$, when $P=3(3.4)+2(1)=12.2[3$ marks]
(ii) To establish an integer solution, consider first of all $x=3$:

Then $P=3 x+2 y$, and $5 x+3 y \geq 20, y \leq 3 x \& y \geq 1$
So $3 y \geq 5$; ie $y \geq \frac{5}{3}$, and $y \leq 9$, and $y \geq 1$, [2 marks]
so that $y=2$ minimises $P=3 x+2 y$, with $P=13$. [2 marks]
Then consider $x=4$, which gives $3 y \geq 0$ and $y \leq 12 \& y \geq 1$ [1 mark]
so that $y=1$ minimises $P=3 x+2 y$, with $P=14$. [1 mark]

Thus the required integer solution is $(3,2)$, with $P=13$. [1 mark]
[Strictly speaking, this is just a good integer solution, as it might be the case that the best integer solution lies elsewhere in the feasible region.]

